scholarly journals Opportunities and challenges of metamaterial-based wireless power transfer for electric vehicles

2017 ◽  
Vol 5 (1) ◽  
pp. 9-19 ◽  
Author(s):  
Zhen Zhang ◽  
Bowen Zhang ◽  
Bin Deng ◽  
Xile Wei ◽  
Jiang Wang

This paper reviews previous studies on metamaterials and its application to wireless power transfer (WPT) technologies, as well as discussing about development opportunities and technical challenges for the contactless charging of electric vehicles (EVs). The EV establishes a bridge between sustainable energies and our daily transportation, especially the park-and-charge and move-and-charge for EVs have attracted increasing attentions from the academia and the industry. However, the metamaterials-based WPT has been nearly unexplored specifically for EVs by now. Accordingly, this paper gives an overview for the metamaterial-based WPT technologies, with emphasizes on enhancing efficiency, increasing distance, improving misalignment tolerance, and compacting size. From the perspective of EV wireless charging, this paper discusses about the breakthrough to current WPT technique bottlenecks and prospective EV charging scenarios by utilizing the left-handed material. Meanwhile, the technical issues to be addressed are also summarized in this paper, which aims to arouse emerging research topics for the future development of EV wireless charging systems.

Author(s):  
Mr. Suraj Hussainsaheb Mulla ◽  
Mr. Vipul Uddhav Hawale ◽  
Mr. Pradeep Ramrao More ◽  
Mr. Kiran Joy Mandumpal ◽  
Prof. Supriya Shigwan

Electric vehicles are seen as an alternative option in response to the depletion of resources. In order to increase the use of EVs in daily life, practical and reliable methods to charge batteries of EVs are quite important, accordingly wireless power transfer (WPT) is considered as a solution to charge batteries. In this project, a prototype system of wireless charger which has 60 kHz operation frequency is designed and implemented. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. But by using Wireless Charging system‘s Wireless charging opportunity. It Provides convenience to the customer, inherent electrical isolation, regulation done on grid side and reduces on-board ESS size using dynamic on-road charging. The main objective of our project is to design and develop an antenna system suitable for vehicle using resonant magnetic coupled wireless power transfer technology to electric vehicle charging systems. Application of WPT in EVs provides a clean, convenient and safe operation. At the core of the WPT systems are primary and secondary coils. These coils construct a loosely coupled system where the coupling coefficient is between 0.1-0.5. In order to transfer the rated power, both sides have to be tuned by resonant capacitors. The operating frequency is a key selection criterion for all applications and it especially affects the dimensions of the coils and the selection of the components for the power electronic circuit. A Resonant wireless transfer system for vehicle charging technology is designed.


Author(s):  
Nadia Nazieha Nanda ◽  
Mohd Shahrin Abu Hanifah ◽  
Siti Hajar Yusoff ◽  
Nadirah Abdul Rahim ◽  
Mashkuri Yaacob ◽  
...  

The emerging of inductive wireless power transfer (IWPT) technology provides more opportunities for the electric vehicle (EV) battery to have a better recharging process. With the development of IWPT technology, various way of wireless charging of the EV battery is proposed in order to find the best solution. To further understand the fundamentals of the IWPT system itself, an ample review is done. There are different ways of EV charging which are static charging (wired), static wireless charging (SWC) and dynamic wireless charging (DWC). The review starts with a brief comparison of static charging, SWC and DWC. Then, in detailed discussion on the fundamental concepts, related laws and equations that govern the IWPT principle are also included. In this review, the focus is more on the DWC with a little discussion on static charging and SWC to ensure in-depth understanding before one can do further research about the EV charging process. The in-depth perception regarding the development of DWC is elaborated together with the system architecture of the IWPT and DWC system and the different track versions of DWC, which is installable to the road lane.


2019 ◽  
Vol 87 ◽  
pp. 01017
Author(s):  
Shivanand M N ◽  
Y. Maruthi ◽  
Phaneendra Babu Bobba ◽  
Sandeep Vuddanti

India has taken major step in adopting the electric vehicle by means of FAME Scheme (Fast Adoption and Manufacturing of Electric Vehicles), a government initiative. ARAI (Automotive Research Authority of India) and DHI (Department of Heavy Industry) have published standardization protocol for both EV charging infrastructure. Many of those standards are derived from the SAE (Society of Automotive Engineers) Internationals and IEC (International Electrotechnical Commission). USA, Europe and China are also following the same standards to build the EV (Electric Vehicle) infrastructure. This paper provides the Indian standards to build EV charging infrastructure and comparing it with other countries. Glimpses on energy demand for electric vehicles in Indian market. It also provides the demanding wireless power transfer technology in EV’s. Status of Standards provided by the industry on wireless power transfer. Factors that are necessary to be considered before drafting the standards for WPT.


Author(s):  
Partha Sarathi Subudhi ◽  
Krithiga S

AbstractElectric vehicles (EV) are found to be a good alternative for the conventional internal combustion (IC) engine vehicles in transportation sector due to its various advantages. Now-a-days, wireless charging of EV battery is preferred among the various methods used for charging EV battery. In this paper, extensive review is carried out on various methods used for wireless charging of an EV battery. Different techniques used for transferring power in wireless mode to charge the EV battery are static EV charging technique and dynamic EV charging technique. Static wireless EV battery charging technique adopts inductive and capacitive method for transferring power whereas, dynamic wireless EV battery charging technique adopts only inductive method for transferring power. These techniques are discussed thoroughly in this paper and broad review is carried out with a focus on the compensation circuit topologies, types of core for magnetic coupled inductors, different converters and controllers used for wireless power transfer (WPT) system. Also, design aspects of an static wireless EV battery charging system along with its equivalent circuit analysis is presented in this paper. Challenges and future development in wireless charging of EV battery is also explained in this paper.


2021 ◽  
Vol 7 ◽  
pp. e567
Author(s):  
Seung-Mok Lee

As the necessity of wireless charging to support the popularization of electric vehicles (EVs) emerges, the development of a wireless power transfer (WPT) system for EV wireless charging is rapidly progressing. The WPT system requires alignment between the transmitter coils installed on the parking lot floor and the receiver coils in the vehicle. To automatically align the two sets of coils, the WPT system needs a localization technology that can precisely estimate the vehicle’s pose in real time. This paper proposes a novel short-range precise localization method based on ultrawideband (UWB) modules for application to WPT systems. The UWB module is widely used as a localization sensor because it has a high accuracy while using low power. In this paper, the minimum number of UWB modules consisting of two UWB anchors and two UWB tags that can determine the vehicle’s pose is derived through mathematical analysis. The proposed localization algorithm determines the vehicle’s initial pose by globally optimizing the collected UWB distance measurements and estimates the vehicle’s pose by fusing the vehicle’s wheel odometry data and the UWB distance measurements. To verify the performance of the proposed UWB-based localization method, we perform various simulations and real vehicle-based experiments.


Sign in / Sign up

Export Citation Format

Share Document