Wireless Power Transfer Topologies used for Static and Dynamic Charging of EV Battery: A Review

Author(s):  
Partha Sarathi Subudhi ◽  
Krithiga S

AbstractElectric vehicles (EV) are found to be a good alternative for the conventional internal combustion (IC) engine vehicles in transportation sector due to its various advantages. Now-a-days, wireless charging of EV battery is preferred among the various methods used for charging EV battery. In this paper, extensive review is carried out on various methods used for wireless charging of an EV battery. Different techniques used for transferring power in wireless mode to charge the EV battery are static EV charging technique and dynamic EV charging technique. Static wireless EV battery charging technique adopts inductive and capacitive method for transferring power whereas, dynamic wireless EV battery charging technique adopts only inductive method for transferring power. These techniques are discussed thoroughly in this paper and broad review is carried out with a focus on the compensation circuit topologies, types of core for magnetic coupled inductors, different converters and controllers used for wireless power transfer (WPT) system. Also, design aspects of an static wireless EV battery charging system along with its equivalent circuit analysis is presented in this paper. Challenges and future development in wireless charging of EV battery is also explained in this paper.

2017 ◽  
Vol 5 (1) ◽  
pp. 9-19 ◽  
Author(s):  
Zhen Zhang ◽  
Bowen Zhang ◽  
Bin Deng ◽  
Xile Wei ◽  
Jiang Wang

This paper reviews previous studies on metamaterials and its application to wireless power transfer (WPT) technologies, as well as discussing about development opportunities and technical challenges for the contactless charging of electric vehicles (EVs). The EV establishes a bridge between sustainable energies and our daily transportation, especially the park-and-charge and move-and-charge for EVs have attracted increasing attentions from the academia and the industry. However, the metamaterials-based WPT has been nearly unexplored specifically for EVs by now. Accordingly, this paper gives an overview for the metamaterial-based WPT technologies, with emphasizes on enhancing efficiency, increasing distance, improving misalignment tolerance, and compacting size. From the perspective of EV wireless charging, this paper discusses about the breakthrough to current WPT technique bottlenecks and prospective EV charging scenarios by utilizing the left-handed material. Meanwhile, the technical issues to be addressed are also summarized in this paper, which aims to arouse emerging research topics for the future development of EV wireless charging systems.


Author(s):  
Nadia Nazieha Nanda ◽  
Mohd Shahrin Abu Hanifah ◽  
Siti Hajar Yusoff ◽  
Nadirah Abdul Rahim ◽  
Mashkuri Yaacob ◽  
...  

The emerging of inductive wireless power transfer (IWPT) technology provides more opportunities for the electric vehicle (EV) battery to have a better recharging process. With the development of IWPT technology, various way of wireless charging of the EV battery is proposed in order to find the best solution. To further understand the fundamentals of the IWPT system itself, an ample review is done. There are different ways of EV charging which are static charging (wired), static wireless charging (SWC) and dynamic wireless charging (DWC). The review starts with a brief comparison of static charging, SWC and DWC. Then, in detailed discussion on the fundamental concepts, related laws and equations that govern the IWPT principle are also included. In this review, the focus is more on the DWC with a little discussion on static charging and SWC to ensure in-depth understanding before one can do further research about the EV charging process. The in-depth perception regarding the development of DWC is elaborated together with the system architecture of the IWPT and DWC system and the different track versions of DWC, which is installable to the road lane.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2209 ◽  
Author(s):  
Jie Wu ◽  
Lizhong Bie ◽  
Nan Jin ◽  
Leilei Guo ◽  
Jitao Zhang ◽  
...  

In wireless charging devices, a transmitter that applies a single inverter to output dual-frequency can effectively solve the charging incompatibility problem caused by different wireless charging standards and reduce the equipment volume. However, it is very difficult to solve the switching angle of the modulated dual-frequency waveform, which involves non-linear high-dimensional multi-objective optimization with multiple constraints. In this paper, an improved differential evolution (DE) algorithm is proposed to solve the transcendental equations of switching angle trains of dual-frequency programmed harmonic modulation (PHM) waveform. The proposed algorithm maintains diversity while preserving the elites and improves the convergence speed of the solution. The advantage of the proposed algorithm was verified by comparing with non-dominated sorting genetic algorithm II (NSGA II) and multi-objective particle swarm optimization (MOPSO). The simulation and experimental results validate that the proposed method can output dual-frequency with a single inverter for wireless power transfer (WPT).


Sign in / Sign up

Export Citation Format

Share Document