Rapid necrosis II: physiological and molecular analysis of 2,4-D resistance in Sumatran fleabane (Conyza sumatrensis)

Weed Science ◽  
2021 ◽  
pp. 1-26
Author(s):  
Andrew R. S. de Queiroz ◽  
Carla A. Delatorre ◽  
Catarine Markus ◽  
Felipe R. Lucio ◽  
Paula S. Angonese ◽  
...  

Abstract In 2015, plants of Sumatran fleabane [Conyza sumatrensis (Retz.) E. Walker] were identified in a crop field with an unusual rapid necrosis herbicide symptom after application of 2,4-D. An initial study identified that the symptoms began about 2 h after herbicide application, the resistant factor is high (resistance factor = 19), and the resistance decreased at low light. The mechanism of resistance is not known yet, but the symptomatology suggests it may be related to reduced translocation, ATP-binding cassette class B (ABCB) transporters, changes on auxin perception genes or induction of genes involved in response to pathogens and abiotic stresses. The objective of this study was to investigate the mechanisms involved in the resistance to 2,4-D caused by rapid necrosis using inhibitors of enzymes involved in detoxification and carriers. Neither the inhibitors of ABCB and auxin transporters TIBA, NPA, verapamil and orthovanadate, nor the inhibitors of detoxifying enzymes, as malathion, NBD-Cl and imidazole, avoided the rapid necrosis phenotype. However, orthovanadate and sodium azide (possibly related with auxin transport) were able to partially reduce oxidative stress in leaf disc. The expression of ABCM10 (an ABCD transporter gene), TIR1_1 (an auxin receptor gene) and CAT4 (an amino acid transporter gene) was quickly reduced after 2,4-D application in the resistant accession. Contrary to our hypothesis, LESION SIMULATING DISEASE RESISTANCE 1_3 (LSD1_3) expression increased in response to 2,4-D. LSD1_3 is important for the response to pathogen and abiotic stresses. The rapid necrosis mechanism is not related to 2,4-D detoxification but might be related to changes in the TIR receptor or auxin transport. Mutations in other transporters or in proteins involved in abiotic and pathogen stresses cannot be ruled out.

2003 ◽  
Vol 18 (2) ◽  
pp. 77-81 ◽  
Author(s):  
Hasan Herken ◽  
M. Emin Erdal ◽  
Ömer Böke ◽  
Haluk A. Savaş

AbstractBackgroundThe pathophysiology of tardive dyskinesia (TD) is not completely understood.AimTo assess the relationship of TD with 5-HT2A receptor gene, serotonin transporter gene (5 HTT), and catechol-o-methyltransferase (COMT) gene polymorphisms.MethodsOur study comprised 111 unrelated subjects who strictly met DSM-IV criteria for schizophrenia and 32 TD, and 79 healthy unrelated controls; all the subjects were of Turkish origin. The analyses of 5-HT2A receptor gene, 5 HTT gene, and COMT gene polymorphisms were performed using polymerase chain reaction (PCR) technique.ResultsThe polymorphisms of these genes were not significantly different between the schizophrenic patients, TD and control subjects.ConclusionsOur findings indicated that 5-HT2A receptor gene, 5 HTT gene, and COMT gene polymorphisms were similar in schizophrenia with non-TD, schizophrenia with TD, and healthy controls. These polymorphisms, though, do not help to evaluate the susceptibility to TD.


2009 ◽  
Vol 35 (8) ◽  
pp. 1410-1417 ◽  
Author(s):  
Xiao-Long MA ◽  
Ying-Hui LIU ◽  
Zu-Li YUAN ◽  
Yun-Su SHI ◽  
Yan-Chun SONG ◽  
...  

2021 ◽  
Author(s):  
Yucong Li ◽  
Jiahui Shao ◽  
Yansong Fu ◽  
Yu Chen ◽  
Hongzhe Wang ◽  
...  

Rhizosphere microorganisms interact with plant roots by producing chemical signals to regulate root development. However, the involved distinct bioactive compounds and the signal transduction pathways are remaining to be identified. Here, we show that sesquiterpenes (SQTs) are the main volatile compounds produced by plant beneficial Trichoderma guizhouense NJAU 4742, inhibition of SQTs synthesis in this strain indicated their involvement in plant-fungus cross-kingdom signaling. SQTs component analysis further identified the cedrene, a high abundant SQT in strain NJAU 4742, could stimulate plant growth and root development. Genetic analysis and auxin transport inhibition showed that auxin receptor TIR1, AFB2, auxin-responsive protein IAA14, and transcription factor ARF7, ARF19 affect the response of lateral roots to cedrene. Moreover, auxin influx carrier AUX1, efflux carrier PIN2 were also indispensable for cedrene-induced lateral root formation. Confocal imaging showed that cedrene affected the expression of pPIN2:PIN2:GFP and pPIN3:PIN3:GFP, which may be related to the effect of cedrene on root morphology. These results suggest that a novel SQT molecule from plant beneficial T. guizhouense can regulate plant root development through auxin transport and signaling.


2021 ◽  
Vol 10 (24) ◽  
pp. 5892
Author(s):  
Damian Czarnecki ◽  
Marcin Ziółkowski ◽  
Jan Chodkiewicz ◽  
Anna Długosz ◽  
Joanna Feldheim ◽  
...  

The main aim of this work was to determine the impact of COMT and DRD2 gene polymorphisms together with temperament and character traits on alcohol craving severity alcohol-dependent persons. The sample comprised of 89 men and 16 women (aged 38±7). For the sake of psychological assessment various analytic methods have been applied like the Short Alcohol Dependence Data Questionnaire (SADD), Penn Alcohol Craving Scale (PACS) or Temperament and Character Inventory (TCI) test. The SNP polymorphism of the analyzed genes was determined by Real Time PCR test. The results showed, that the COMT polymorphismmay have an indirected relationship with the intensity and changes in alcohol craving during abstinence. The DRD2 receptor gene polymorphisms are related with the intensity of alcohol craving. It seems that the character traits like “self-targeting”, including “self-acceptance”, are more closely related to the severity of alcohol craving and polymorphic changes in the DRD2 receptor than temperamental traits. Although this is a pilot study the obtained results appeared to be promising and clearly indicate the link betweengene polymorphisms alcohol craving and its severity.


2017 ◽  
Author(s):  
Maya Khasin ◽  
Rebecca R. Cahoon ◽  
Kenneth W. Nickerson ◽  
Wayne R. Riekhof

AbstractIndole-3-acetic acid is a ubiquitous small molecule found in all domains of life. It is the predominant and most active auxin in seed plants, where it coordinates a variety of complex growth and development processes. The potential origin of auxin signaling in algae remains a matter of some controversy. In order to clarify the evolutionary context of algal auxin signaling, we undertook a genomic survey to assess whether auxin acts as a signaling molecule in the emerging model chlorophyte Chlorella sorokiniana UTEX 1230. C. sorokiniana produces the auxin indole-3-acetic acid (IAA), which was present in both the cell pellet and in the supernatant at a concentration of ~ 1 nM, and its genome encodes orthologs of genes related to auxin synthesis, transport, and signaling in higher plants. Candidate orthologs for the canonical AUX/IAA signaling pathway were not found; however, auxin-binding protein 1 (ABP1), an alternate auxin receptor, is present and highly conserved at essential auxin binding and zinc coordinating residues. Additionally, candidate orthologs for PIN proteins, responsible for intercellular, vectorial auxin transport in higher plants, were not found, but PILs (PIN-Like) proteins, a recently discovered family that mediates intracellular auxin transport, were identified. The distribution of auxin related gene in this unicellular chlorophyte demonstrates that a core suite of auxin signaling components was present early in the evolution of plants. Understanding the simplified auxin signaling pathways in chlorophytes will aid in understanding phytohormone signaling and crosstalk in seed plants, and in understanding the diversification and integration of developmental signals during the evolution of multicellular plants.


Sign in / Sign up

Export Citation Format

Share Document