Immunometric assay of low molecular weight haptens containing primary amino groups

1994 ◽  
Vol 66 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Philippe. Pradelles ◽  
Jacques. Grassi ◽  
Christophe. Creminon ◽  
Bruno. Boutten ◽  
Suzanne. Mamas
2020 ◽  
Vol 81 (2) ◽  
pp. 301-308 ◽  
Author(s):  
Wenzhe Song ◽  
Yu Zhang ◽  
Amir Hossein Hamidian ◽  
Min Yang

Abstract The biodegradation of polyacrylamide (PAM) includes the hydrolysis of amino groups and cleavage of the carbon chain; however, the effect of molecular weight on the biodegradation needs further investigations. In this study, biodegradation of low molecular weight PAM (1.6 × 106 Da) was evaluated in two aerobic (25 °C and 40 °C) and two anaerobic (35 °C and 55 °C) reactors over 100 days. The removal of the low molecular weight PAM (52.0–52.6%) through the hydrolysis of amino groups by anaerobic treatment (35 °C and 55 °C) was much higher than that of the high molecular weight (2.2 × 107 Da, 11.2–17.0%) observed under the same conditions. The molecular weight was reduced from 1.6 × 106 to 6.45–7.42 × 105 Da for the low molecular weight PAM, while the high molecular weight PAM declined from 2.2 × 107 to 3.76–5.87 × 106 Da. The results showed that the amino hydrolysis of low molecular weight PAM is easier than that of the high molecular weight one, while the cleavage of its carbon chain is still difficult. The molecular weights of PAM in the effluents from the two aerobic reactors (25 °C and 40 °C) were further reduced to 4.31 × 105 and 5.68 × 105 Da by the biofilm treatment, respectively. The results would be useful for the management of wastewater containing PAM.


1971 ◽  
Vol 24 (1) ◽  
pp. 179 ◽  
Author(s):  
IJ O'donnell

Proteins extracted from reduced and carboxymethylated feather keratins (SCM-keratins) have been studied by Harrap and Woods (1964a, 1964b, 1967). They have demonstrated the presence of electrophoretic heterogeneity amongst the proteins and have obtained a molecular weight of approximately 11,000 in agreement with earlier work of Woodin (1954). There was no indication of marked heterogeneity with respect to size. Using acid hydrolysis and determination of acetic acid produced they found an acetyl content of 1 �30 molesj104 g in the rachis off owl feathers. These were thought to be attached to primary amino groups since there were no O-acetyl groups. In the present paper the isolation and characterization of the predominant, and probably sole, amino-terminal tripeptide from goose feather calamus is described. Goose feather calamus was chosen because its extracted proteins had one of the simplest electrophoretic patterns of proteins from the feathers of a number of species (Harrap and Woods 1967).


2022 ◽  
Vol 18 ◽  
pp. 53-69
Author(s):  
Ruan Carlos B Ribeiro ◽  
Patricia G Ferreira ◽  
Amanda de A Borges ◽  
Luana da S M Forezi ◽  
Fernando de Carvalho da Silva ◽  
...  

Several low molecular weight naphthoquinones are very useful in organic synthesis. These compounds have given rise to thousands of other naphthoquinones that have been tested against various microorganisms and pharmacological targets, including being used in the preparation of several drugs that are on the pharmaceutical market. Among these naphthoquinones, the series of compounds prepared from 1,2-naphthoquinone-4-sulfonic acid salts (β-NQS) stands out. In addition to being used in organic synthesis, they are excellent analytical derivatization reagents to spectrophotometrically determine drugs containing primary and secondary amino groups. This review summarizes the literature involving β-NQS.


1945 ◽  
Vol 23b (4) ◽  
pp. 158-163
Author(s):  
H. H. Richmond ◽  
George F. Wright

The compound designated by Emil Fischer as 2,5-dihydroxypiperazine has been shown to be tris-aminomethyltrioxane by molecular weight determination of its derivatives. These benzoyl and benzenesulphonyl chloride derivatives further demonstrate the absence of hydroxyl groups and the presence of primary amino groups in the original compound. It has been found that use of ammonium carbonate, but not ammonium chloride, enhances the yield of aminoacetal obtained by ammonolysis of chloroacetal.


Author(s):  
G.K.W. Balkau ◽  
E. Bez ◽  
J.L. Farrant

The earliest account of the contamination of electron microscope specimens by the deposition of carbonaceous material during electron irradiation was published in 1947 by Watson who was then working in Canada. It was soon established that this carbonaceous material is formed from organic vapours, and it is now recognized that the principal source is the oil-sealed rotary pumps which provide the backing vacuum. It has been shown that the organic vapours consist of low molecular weight fragments of oil molecules which have been degraded at hot spots produced by friction between the vanes and the surfaces on which they slide. As satisfactory oil-free pumps are unavailable, it is standard electron microscope practice to reduce the partial pressure of organic vapours in the microscope in the vicinity of the specimen by using liquid-nitrogen cooled anti-contamination devices. Traps of this type are sufficient to reduce the contamination rate to about 0.1 Å per min, which is tolerable for many investigations.


Author(s):  
James F. Hainfeld ◽  
Frederic R. Furuya

Glutaraldehyde is a useful tissue and molecular fixing reagents. The aldehyde moiety reacts mainly with primary amino groups to form a Schiff's base, which is reversible but reasonably stable at pH 7; a stable covalent bond may be formed by reduction with, e.g., sodium cyanoborohydride (Fig. 1). The bifunctional glutaraldehyde, (CHO-(CH2)3-CHO), successfully stabilizes protein molecules due to generally plentiful amines on their surface; bovine serum albumin has 60; 59 lysines + 1 α-amino. With some enzymes, catalytic activity after fixing is preserved; with respect to antigens, glutaraldehyde treatment can compromise their recognition by antibodies in some cases. Complicating the chemistry somewhat are the reported side reactions, where glutaraldehyde reacts with other amino acid side chains, cysteine, histidine, and tyrosine. It has also been reported that glutaraldehyde can polymerize in aqueous solution. Newer crosslinkers have been found that are more specific for the amino group, such as the N-hydroxysuccinimide esters, and are commonly preferred for forming conjugates. However, most of these linkers hydrolyze in solution, so that the activity is lost over several hours, whereas the aldehyde group is stable in solution, and may have an advantage of overall efficiency.


1998 ◽  
Vol 1 (5) ◽  
pp. 166-174 ◽  
Author(s):  
Evelyn R Hermes De Santis ◽  
Betsy S Laumeister ◽  
Vidhu Bansal ◽  
Vandana Kataria ◽  
Preeti Loomba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document