Differential reaction rate determination of barium orthotitanate in barium titanate powder

1975 ◽  
Vol 47 (8) ◽  
pp. 1467-1469 ◽  
Author(s):  
Michihiro. Murata ◽  
Masayuki. Omatsu
2020 ◽  
Vol 16 ◽  
Author(s):  
Ikko Mikami ◽  
Eri Shibayama ◽  
Kengo Takagi

Background: Determination of a reducing substance based on the reaction between Ce(IV) and a reducing substance and fluorescence detection of Ce(III) generated has been reported as a selective and sensitive method. However, this method could not be applied to the determination of alcohol due to the low reaction rate of alcohol and Ce(IV). Objective: We found that thiosulfate catalytically enhanced reaction of alcohols (such as, methanol, ethanol, and propanol) and Ce(IV). Utilizing this effect, we developed a new method for the determination of alcohols. Results: In the presence of thiosulfate, an increase in fluorescence intensity was detected by injecting alcohol at concentrations of several millimolar, whereas it was not observed even at the concentration of 10% v/v (2 M for ethanol) in the absence of thiosulfate. The optimum detection conditions were determined to be 4.0 mM Ce(IV) sulfate and 0.50 mM thiosulfate, and the detection limit (S/N = 3) of ethanol under these conditions was 1 mM. In the calibration curves, changes in the slope were observed when the alcohol concentrations were approximately 10–25 mM. Using a thiosulfate solution containing ethanol as the reaction solution, a calibration curve without any change in slope was obtained, although the concentration of ethanol at the detection limit increased. The alcohols in the liquor and fuel were successfully analyzed using the proposed detection method as a postcolumn reaction. Conclusion: This new alcohol detection method using a versatile fluorescence detector can be applied to the postcolumn reaction of HPLC omitting need of time-consuming pretreatment processes.


1979 ◽  
Vol 44 (2) ◽  
pp. 401-405 ◽  
Author(s):  
Ľubica Adamčíková ◽  
Ľudovít Treindl

The kinetics and mechanism of the redox reactions of U3+ ions with mono- and dichloroacetic acids were studied. The influence of pH was observed mainly in the second case and led to the determination of the rate constants and activation parameters corresponding to two parallel steps, namely oxidation of U3+ with CHCl2COO- ions and oxidation of U3+ with CHCl2.COOH molecules. The influence of binary mixtures of water with methanol, ethanol, isopropanol, or tert-butenol on the reaction rate was followed. Increasing alcohol concentration influences the rate constant not only through changing dielectric constant and solvation of the reactants but also through a change of the solvent structure which plays a role in reactions with an outer sphere mechanism of the electron transfer.


1984 ◽  
Vol 49 (3) ◽  
pp. 673-679 ◽  
Author(s):  
Pavel Lederer ◽  
Eva Mácová ◽  
Josef Vepřek-Šiška

The decomposition of peroxobenzoic acid in benzene was studied, and catalytic effects of Fe(III), Mn(III), Co(II), Co(III), and Cr(III) on the reaction rate and the composition of the reaction mixture were investigated. An analogous experiment carried out in perdeuterobenzene and determination of the distribution of deuterium in the reaction products provided evidence for the participation of the solvent in peroxobenzoic acid decomposition.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1990 ◽  
Author(s):  
Md. Hoque ◽  
Marcelo Guzman

Heterogeneous photocatalysis is a prominent area of research with major applications in solar energy conversion, air pollution mitigation, and removal of contaminants from water. A large number of scientific papers related to the photocatalysis field and its environmental applications are published in different journals specializing in materials and nanomaterials. However, many problems exist in the conception of papers by authors unfamiliar with standard characterization methods of photocatalysts as well as with the procedures needed to determine photocatalytic activities based on the determination of “apparent quantum efficiencies” within a wavelength interval or “apparent quantum yields” in the case of using monochromatic light. In this regard, an astonishing number of recent research articles include claims of highly efficient (photo)catalysts or similar terms about materials with superior or enhanced efficiency for a given reaction without proper experimental support. Consequently, the comparison of the efficiencies of photocatalysts may result as being meaningless, especially when reports are only based on expressions determining (1) a reaction rate per weight of catalyst or its surface area, (2) quantum efficiencies or quantum yields, and (3) turnover frequencies or turnover numbers. Herein, we summarize the standards needed for reporting valuable data in photocatalysis and highlight some common discrepancies found in the literature. This work should inform researchers interested in reporting photocatalysis projects about the correct procedures for collecting experimental data and properly characterizing the materials by providing examples and key supporting literature.


Sign in / Sign up

Export Citation Format

Share Document