Self-Optimizing Support Vector Elastic Net

2020 ◽  
Vol 92 (23) ◽  
pp. 15306-15316
Author(s):  
Zewei Chen ◽  
Peter de Boves Harrington
Keyword(s):  
2018 ◽  
Author(s):  
Canelle Poirier ◽  
Audrey Lavenu ◽  
Valérie Bertaud ◽  
Boris Campillo-Gimenez ◽  
Emmanuel Chazard ◽  
...  

BACKGROUND Traditional surveillance systems produce estimates of influenza-like illness (ILI) incidence rates, but with 1- to 3-week delay. Accurate real-time monitoring systems for influenza outbreaks could be useful for making public health decisions. Several studies have investigated the possibility of using internet users’ activity data and different statistical models to predict influenza epidemics in near real time. However, very few studies have investigated hospital big data. OBJECTIVE Here, we compared internet and electronic health records (EHRs) data and different statistical models to identify the best approach (data type and statistical model) for ILI estimates in real time. METHODS We used Google data for internet data and the clinical data warehouse eHOP, which included all EHRs from Rennes University Hospital (France), for hospital data. We compared 3 statistical models—random forest, elastic net, and support vector machine (SVM). RESULTS For national ILI incidence rate, the best correlation was 0.98 and the mean squared error (MSE) was 866 obtained with hospital data and the SVM model. For the Brittany region, the best correlation was 0.923 and MSE was 2364 obtained with hospital data and the SVM model. CONCLUSIONS We found that EHR data together with historical epidemiological information (French Sentinelles network) allowed for accurately predicting ILI incidence rates for the entire France as well as for the Brittany region and outperformed the internet data whatever was the statistical model used. Moreover, the performance of the two statistical models, elastic net and SVM, was comparable.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zheng-Yang Zhao ◽  
Wen-Zhun Huang ◽  
Jie Pan ◽  
Yu-An Huang ◽  
Shan-Wen Zhang ◽  
...  

The identification of drug-target interactions (DTIs) plays a crucial role in drug discovery. However, the traditional high-throughput techniques based on clinical trials are costly, cumbersome, and time-consuming for identifying DTIs. Hence, new intelligent computational methods are urgently needed to surmount these defects in predicting DTIs. In this paper, we propose a novel computational method that combines position-specific scoring matrix (PSSM), elastic net based sparse features extraction, and rotation forest (RF) classifier. Specifically, we converted each protein primary sequence into PSSM, which contains biological evolutionary information. Then we extract the hidden sparse feature descriptors in PSSM by elastic net based sparse feature extraction method (ESFE). After that, we fuse them with the features of drug, which are represented by molecular fingerprints. Finally, rotation forest classifier works on detecting the potential drug-target interactions. When performing the proposed method by the experiments of fivefold cross validation (CV) on enzyme, ion channel, G protein-coupled receptors (GPCRs), and nuclear receptor datasets, this method achieves average accuracies of 90.32%, 88.91%, 80.65%, and 79.73%, respectively. We also compared the proposed model with the state-of-the-art support vector machine (SVM) classifier and other effective methods on the same datasets. The comparison results distinctly indicate that the proposed model possesses the efficient and robust ability to predict DTIs. We expect that the new model will be able to take effects on predicting massive DTIs.


2020 ◽  
Vol 24 (23) ◽  
pp. 17669-17677 ◽  
Author(s):  
Renato De Leone ◽  
Nadaniela Egidi ◽  
Lorella Fatone

2019 ◽  
Vol 11 (10) ◽  
pp. 2848 ◽  
Author(s):  
Irina Matijosaitiene ◽  
Anthony McDowald ◽  
Vishal Juneja

This research aims to identify spatial and time patterns of theft in Manhattan, NY, to reveal urban factors that contribute to thefts from motor vehicles and to build a prediction model for thefts. Methods include time series and hot spot analysis, linear regression, elastic-net, Support vector machines SVM with radial and linear kernels, decision tree, bagged CART, random forest, and stochastic gradient boosting. Machine learning methods reveal that linear models perform better on our data (linear regression, elastic-net), specifying that a higher number of subway entrances, graffiti, and restaurants on streets contribute to higher theft rates from motor vehicles. Although the prediction model for thefts meets almost all assumptions (five of six), its accuracy is 77%, suggesting that there are other undiscovered factors making a contribution to the generation of thefts. As an output demonstrating final results, the application prototype for searching safer parking in Manhattan, NY based on the prediction model, has been developed.


Sign in / Sign up

Export Citation Format

Share Document