scholarly journals Analysis of a Common Cold Virus and Its Subviral Particles by Gas-Phase Electrophoretic Mobility Molecular Analysis and Native Mass Spectrometry

2015 ◽  
Vol 87 (17) ◽  
pp. 8709-8717 ◽  
Author(s):  
Victor U. Weiss ◽  
Jessica Z. Bereszcazk ◽  
Marlene Havlik ◽  
Peter Kallinger ◽  
Irene Gösler ◽  
...  
2021 ◽  
Vol 14 (6) ◽  
pp. 498
Author(s):  
Evolène Deslignière ◽  
Anthony Ehkirch ◽  
Bastiaan L. Duivelshof ◽  
Hanna Toftevall ◽  
Jonathan Sjögren ◽  
...  

Antibody-drug conjugates (ADCs) are biotherapeutics consisting of a tumor-targeting monoclonal antibody (mAb) linked covalently to a cytotoxic drug. Early generation ADCs were predominantly obtained through non-selective conjugation methods based on lysine and cysteine residues, resulting in heterogeneous populations with varying drug-to-antibody ratios (DAR). Site-specific conjugation is one of the current challenges in ADC development, allowing for controlled conjugation and production of homogeneous ADCs. We report here the characterization of a site-specific DAR2 ADC generated with the GlyCLICK three-step process, which involves glycan-based enzymatic remodeling and click chemistry, using state-of-the-art native mass spectrometry (nMS) methods. The conjugation process was monitored with size exclusion chromatography coupled to nMS (SEC-nMS), which offered a straightforward identification and quantification of all reaction products, providing a direct snapshot of the ADC homogeneity. Benefits of SEC-nMS were further demonstrated for forced degradation studies, for which fragments generated upon thermal stress were clearly identified, with no deconjugation of the drug linker observed for the T-GlyGLICK-DM1 ADC. Lastly, innovative ion mobility-based collision-induced unfolding (CIU) approaches were used to assess the gas-phase behavior of compounds along the conjugation process, highlighting an increased resistance of the mAb against gas-phase unfolding upon drug conjugation. Altogether, these state-of-the-art nMS methods represent innovative approaches to investigate drug loading and distribution of last generation ADCs, their evolution during the bioconjugation process and their impact on gas-phase stabilities. We envision nMS and CIU methods to improve the conformational characterization of next generation-empowered mAb-derived products such as engineered nanobodies, bispecific ADCs or immunocytokines.


2020 ◽  
Author(s):  
Nuwani W. Weerasinghe ◽  
Yeganeh Habibi ◽  
Kevin A. Uggowitzer ◽  
Christopher J. Thibodeaux

AbstractLanthipeptides are ribosomally-synthesized and post-translationally modified peptide (RiPP) natural products that are biosynthesized in a multistep maturation process by enzymes (lanthipeptide synthetases) that possess relaxed substrate specificity. Recent evidence has suggested that some lanthipeptide synthetases are structurally dynamic enzymes that are allosterically activated by precursor peptide binding, and that conformational sampling of the enzyme-peptide complex may play an important role in defining the efficiency and sequence of biosynthetic events. These “biophysical” processes, while critical for defining the activity and function of the synthetase, remain very challenging to study with existing methodologies. Herein, we show that native nanoelectrospray ionization coupled to ion mobility mass spectrometry (nanoESI-IM-MS) provides a powerful and sensitive means for investigating the conformational landscapes and intermolecular interactions of lanthipeptide synthetases. Namely, we demonstrate that the class II lanthipeptide synthetase (HalM2) and its non-covalent complex with the cognate HalA2 precursor peptide can be delivered into the gas phase in a manner that preserves native structures and intermolecular enzyme-peptide contacts. Moreover, gas phase ion mobility studies of the natively-folded ions demonstrate that peptide binding and mutations to dynamic structural elements of HalM2 alter the conformational landscape of the enzyme, and that the precursor peptide itself exhibits higher order structure in the mass spectrometer. Cumulatively, these data support previous claims that lanthipeptide synthetases are structurally dynamic enzymes that undergo functionally relevant conformational changes in response to precursor peptide binding. This work establishes nanoESI-IM-MS as a versatile approach for unraveling the relationships between protein structure and biochemical function in RiPP biosynthetic systems.


2013 ◽  
Vol 34 (11) ◽  
pp. 1600-1609 ◽  
Author(s):  
Xavier Subirats ◽  
Victor U. Weiss ◽  
Irene Gösler ◽  
Christoph Puls ◽  
Andreas Limbeck ◽  
...  

2020 ◽  
Vol 56 (100) ◽  
pp. 15651-15654
Author(s):  
Sophie R. Harvey ◽  
Zachary L. VanAernum ◽  
Marius M. Kostelic ◽  
Michael T. Marty ◽  
Vicki H. Wysocki

Nanodiscs have emerged as a promising membrane mimetic, and have been utilized in native mass spectrometry studies. Here we use surface-induced dissociation to study the structure of nanodiscs in the gas-phase.


2022 ◽  
Vol 51 (1) ◽  
Author(s):  
Kelly R. Karch ◽  
Dalton T. Snyder ◽  
Sophie R. Harvey ◽  
Vicki H. Wysocki

Native mass spectrometry (nMS) has emerged as an important tool in studying the structure and function of macromolecules and their complexes in the gas phase. In this review, we cover recent advances in nMS and related techniques including sample preparation, instrumentation, activation methods, and data analysis software. These advances have enabled nMS-based techniques to address a variety of challenging questions in structural biology. The second half of this review highlights recent applications of these technologies and surveys the classes of complexes that can be studied with nMS. Complementarity of nMS to existing structural biology techniques and current challenges in nMS are also addressed. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


The Analyst ◽  
2016 ◽  
Vol 141 (21) ◽  
pp. 6042-6050 ◽  
Author(s):  
Victor U. Weiss ◽  
Carlos Urey ◽  
Andreas Gondikas ◽  
Monika Golesne ◽  
Gernot Friedbacher ◽  
...  

Gas-phase electrophoresis of single-charged particles enables liposome characterization and finally the resulting vesicle encapsulation capacity determination.


2015 ◽  
Vol 396 (9-10) ◽  
pp. 991-1002 ◽  
Author(s):  
Albert Konijnenberg ◽  
Jeroen F. van Dyck ◽  
Lyn L. Kailing ◽  
Frank Sobott

Abstract Recent developments in native mass spectrometry and ion mobility have made it possible to analyze the composition and structure of membrane protein complexes in the gas-phase. In this short review we discuss the experimental strategies that allow to elucidate aspects of the dynamic structure of these important drug targets, such as the structural effects of lipid binding or detection of co-populated conformational and assembly states during gating on an ion channel. As native mass spectrometry relies on nano-electrospray of natively reconstituted proteins, a number of commonly used lipid- and detergent-based reconstitution systems have been evaluated for their compatibility with this approach, and parameters for the release of intact, native-like folded membrane proteins studied in the gas-phase. The strategy thus developed can be employed for the investigation of the subunit composition and stoichiometry, oligomeric state, conformational changes, and lipid and drug binding of integral membrane proteins.


Sign in / Sign up

Export Citation Format

Share Document