Red-Emitting Mitochondrial Probe with Ultrahigh Signal-to-Noise Ratio Enables High-Fidelity Fluorescent Images in Two-Photon Microscopy

2015 ◽  
Vol 87 (24) ◽  
pp. 12088-12095 ◽  
Author(s):  
Ge Zhang ◽  
Yuming Sun ◽  
Xiuquan He ◽  
Weijia Zhang ◽  
Minggang Tian ◽  
...  
2019 ◽  
Vol 18 (02) ◽  
pp. 147-154
Author(s):  
Deddy Susilo ◽  
Budihardja Murtianta ◽  
Albert Tarra Wahyu Setiadi

Perangkat audio fidelitas tinggi (high fidelity) memiliki arti seberapa mirip bentuk sinyal keluaran hasil rekonstruksi terhadap sinyal masukan. Pada penelitian ini dirancang suatu sistem pensaklaran yang diterapkan pada masukan dan keluaran penguat awal (pre-amplifier) audio mono (1 kanal), lalu dengan diberikannya sistem pensaklaran tersebut, maka penguat awal audio mono tersebut dapat berfungsi menjadi seolah-olah penguat awal audio stereo. Dari hasil pengujian pada sistem pensaklaran yang sudah digabung pada penguat awal audio mono didapatkan penguatan yang mendekati sama tiap kanalnya dengan kanal kiri sebesar 20.844dB dan kanal kanan sebesar 20.842dB. Akan tetapi, pada hasil perancangan ini masih memiliki beberapa kekurangan yaitu naiknya distorsi sinyal keluaran sebesar 1.550% untuk kanal kiri dan 1.565% untuk keluaran kanal kanan, serta bertambahnya cakap silang (crosstalk) antar kanalnya menjadi -26.24dB dan menurunnya nilai SNR (signal to noise ratio) menjadi 64.06 dB.


2019 ◽  
Vol 55 (97) ◽  
pp. 14681-14684 ◽  
Author(s):  
Li Liu ◽  
Qian Zou ◽  
Jong-Kai Leung ◽  
Jia-Li Wang ◽  
Chuen Kam ◽  
...  

An aggregation-enhanced emission probe was developed for ultrafast labeling and high-fidelity imaging of mitochondria in cancer cells with a high signal-to-noise ratio.


2015 ◽  
Vol 156 (52) ◽  
pp. 2120-2126
Author(s):  
Gergely Szalay ◽  
Linda Judák ◽  
Zoltán Szadai ◽  
Balázs Chiovini ◽  
Dávid Mezey ◽  
...  

Introduction: Two-photon microscopy is the ideal tool to study how signals are processed in the functional brain tissue. However, early raster scanning strategies were inadequate to record fast 3D events like action potentials. Aim: The aim of the authors was to record various neuronal activity patterns with high signal-to-noise ratio in an optical manner. Method: Authors developed new data acquisition methods and microscope hardware. Results: Multiple Line Scanning enables the experimenter to select multiple regions of interests, doing this not just increases repetition speed, but also the signal-to-noise ratio of the fluorescence transients. On the same principle, an acousto-optical deflector based 3D scanning microscope has been developed with a sub-millisecond temporal resolution and a millimeter z-scanning range. Its usability is demonstrated by obtaining 3D optical recordings of action potential backpropagation in several hundred micrometers long neuronal processes of single neurons and by 3D random-access scanning of Ca2+ transients in hundreds of neurons in the mouse visual cortex. Conclusions: Region of interest scanning enables high signal-to-noise ratio and repetition speed, while keeping good depth penetration of the two-photon microscopes. Orv. Hetil., 2015, 156(52), 2120–2126.


2008 ◽  
Vol 62 (8) ◽  
pp. 847-853 ◽  
Author(s):  
H. Georg Schulze ◽  
Rod B. Foist ◽  
Andre Ivanov ◽  
Robin F. B. Turner

Author(s):  
David A. Grano ◽  
Kenneth H. Downing

The retrieval of high-resolution information from images of biological crystals depends, in part, on the use of the correct photographic emulsion. We have been investigating the information transfer properties of twelve emulsions with a view toward 1) characterizing the emulsions by a few, measurable quantities, and 2) identifying the “best” emulsion of those we have studied for use in any given experimental situation. Because our interests lie in the examination of crystalline specimens, we've chosen to evaluate an emulsion's signal-to-noise ratio (SNR) as a function of spatial frequency and use this as our critereon for determining the best emulsion.The signal-to-noise ratio in frequency space depends on several factors. First, the signal depends on the speed of the emulsion and its modulation transfer function (MTF). By procedures outlined in, MTF's have been found for all the emulsions tested and can be fit by an analytic expression 1/(1+(S/S0)2). Figure 1 shows the experimental data and fitted curve for an emulsion with a better than average MTF. A single parameter, the spatial frequency at which the transfer falls to 50% (S0), characterizes this curve.


Author(s):  
W. Kunath ◽  
K. Weiss ◽  
E. Zeitler

Bright-field images taken with axial illumination show spurious high contrast patterns which obscure details smaller than 15 ° Hollow-cone illumination (HCI), however, reduces this disturbing granulation by statistical superposition and thus improves the signal-to-noise ratio. In this presentation we report on experiments aimed at selecting the proper amount of tilt and defocus for improvement of the signal-to-noise ratio by means of direct observation of the electron images on a TV monitor.Hollow-cone illumination is implemented in our microscope (single field condenser objective, Cs = .5 mm) by an electronic system which rotates the tilted beam about the optic axis. At low rates of revolution (one turn per second or so) a circular motion of the usual granulation in the image of a carbon support film can be observed on the TV monitor. The size of the granular structures and the radius of their orbits depend on both the conical tilt and defocus.


Author(s):  
D. C. Joy ◽  
R. D. Bunn

The information available from an SEM image is limited both by the inherent signal to noise ratio that characterizes the image and as a result of the transformations that it may undergo as it is passed through the amplifying circuits of the instrument. In applications such as Critical Dimension Metrology it is necessary to be able to quantify these limitations in order to be able to assess the likely precision of any measurement made with the microscope.The information capacity of an SEM signal, defined as the minimum number of bits needed to encode the output signal, depends on the signal to noise ratio of the image - which in turn depends on the probe size and source brightness and acquisition time per pixel - and on the efficiency of the specimen in producing the signal that is being observed. A detailed analysis of the secondary electron case shows that the information capacity C (bits/pixel) of the SEM signal channel could be written as :


1979 ◽  
Vol 10 (4) ◽  
pp. 221-230 ◽  
Author(s):  
Veronica Smyth

Three hundred children from five to 12 years of age were required to discriminate simple, familiar, monosyllabic words under two conditions: 1) quiet, and 2) in the presence of background classroom noise. Of the sample, 45.3% made errors in speech discrimination in the presence of background classroom noise. The effect was most marked in children younger than seven years six months. The results are discussed considering the signal-to-noise ratio and the possible effects of unwanted classroom noise on learning processes.


Sign in / Sign up

Export Citation Format

Share Document