Crystal Structure of TCPTP Unravels an Allosteric Regulatory Role of Helix α7 in Phosphatase Activity

Biochemistry ◽  
2021 ◽  
Author(s):  
Jai Prakash Singh ◽  
Meng-Jung Lin ◽  
Shu-Fang Hsu ◽  
Wolfgang Peti ◽  
Cheng-Chung Lee ◽  
...  
1999 ◽  
Vol 65 (5) ◽  
pp. 2112-2115 ◽  
Author(s):  
Douglas P. Christensen ◽  
Andrew K. Benson ◽  
Robert W. Hutkins

ABSTRACT The regulatory role of HPr, a protein of the phosphotransferase system (PTS), was investigated in Listeria monocytogenes. By constructing mutations in the conserved histidine 15 and serine 46 residues of HPr, we were able to examine how HPr regulates PTS activity. The results indicated that histidine 15 was phosphorylated in a phosphoenolpyruvate (PEP)-dependent manner and was essential for PTS activity. Serine 46 was phosphorylated in an ATP-dependent manner by a membrane-associated kinase. ATP-dependent phosphorylation of serine 46 was significantly enhanced in the presence of fructose 1,6-diphosphate and resulted in a reduction of PTS activity. The presence of a charge at position 15 did not inhibit ATP-dependent phosphorylation of serine 46, a finding unique to gram-positive PEP-dependent PTSs studied to this point. Finally, HPr phosphorylated at serine 46 does not appear to possess self-phosphatase activity, suggesting a specific phosphatase protein may be essential for the recycling of HPr to its active form.


2014 ◽  
Author(s):  
Agnieszka Rak-Mardyla ◽  
Anna Wrobel ◽  
Eliza Drwal ◽  
Ewa Gregoraszczuk

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunzhen Cheng ◽  
Fan Liu ◽  
Na Tian ◽  
Raphael Anue Mensah ◽  
Xueli Sun ◽  
...  

AbstractFusarium wilt disease, caused by Fusarium oxysporum f.sp. cubense (Foc), has been recognized as the most devastating disease to banana. The regulatory role of long non-coding RNAs (lncRNAs) in plant defense has been verified in many plant species. However, the understanding of their role during early FocTR4 (Foc tropical race 4) infection stage is very limited. In this study, lncRNA sequencing was used to reveal banana root transcriptome profile changes during early FocTR4 infection stages. Quantitative real time PCR (qRT-PCR) was performed to confirm the expression of eight differentially expressed (DE) lncRNAs (DELs) and their predicted target genes (DETs), and three DE genes (DEGs). Totally, 12,109 lncRNAs, 36,519 mRNAs and 2642 novel genes were obtained, of which 1398 (including 78 DELs, 1220 DE known genes and 100 DE novel genes) were identified as FocTR4 responsive DE transcripts. Gene function analysis revealed that most DEGs were involved in biosynthesis of secondary metabolites, plant–pathogen interaction, plant hormone signal transduction, phenylalanine metabolism, phenylpropanoid biosynthesis, alpha-linolenic acid metabolism and so on. Coincidently, many DETs have been identified as DEGs in previous transcriptome studies. Moreover, many DETs were found to be involved in ribosome, oxidative phosphorylation, lipoic acid metabolism, ubiquitin mediated proteolysis, N-glycan biosynthesis, protein processing in endoplasmic reticulum and DNA damage response pathways. QRT-PCR result showed the expression patterns of the selected transcripts were mostly consistent with our lncRNA sequencing data. Our present study showed the regulatory role of lncRNAs on known biotic and abiotic stress responsive genes and some new-found FocTR4 responsive genes, which can provide new insights into FocTR4-induced changes in the banana root transcriptome during the early pathogen infection stage.


Sign in / Sign up

Export Citation Format

Share Document