Water-Stable Zn(II) Coordination Polymers Regulated by Polysubstituted Benzenes and Their Photocatalytic Performance toward Methylene Blue Degradation Dominated by Ligand-Field Effects

2021 ◽  
Vol 21 (2) ◽  
pp. 1218-1232
Author(s):  
Yan Zhao ◽  
Lei Li ◽  
Zhong-Yi Liu ◽  
Bo Ding ◽  
Xiu-Guang Wang ◽  
...  
RSC Advances ◽  
2017 ◽  
Vol 7 (41) ◽  
pp. 25314-25324 ◽  
Author(s):  
Lin Xiao ◽  
Li Youji ◽  
Chen Feitai ◽  
Xu Peng ◽  
Li Ming

A highly efficient and elaborately structured visible-light-driven catalyst composed of mesoporous TiO2 (MT) doped with Ag+-coated graphene (MT-Ag/GR) has been successfully fabricated by a sol–gel and solvothermal method.


2011 ◽  
Vol 335 (1-2) ◽  
pp. 145-150 ◽  
Author(s):  
Jian-Hui Sun ◽  
Shu-Ying Dong ◽  
Jing-Lan Feng ◽  
Xiao-Jing Yin ◽  
Xiao-Chuan Zhao

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
I. Abdul Rahman ◽  
M. T. M. Ayob ◽  
S. Radiman

ZnO nanowhiskers were used for photodecomposition of methylene blue in aqueous solution under UV irradiation. The rate of methylene blue degradation increased linearly with time of UV irradiation. 54% of degradation rate was observed when the ZnO nanowhiskers were used as photocatalysts for methylene blue degradation for 80 min under UV irradiation. The decoration of p-type NiO nanoparticles on n-type ZnO nanowhiskers significantly enhanced photocatalytic activity and reached 72% degradation rate of methylene blue by using the same method. NiO-decorated ZnO was recycled for second test and shows 66% degradation from maximal peak of methylene blue within the same period. The increment of photocatalytic activity of NiO-decorated ZnO nanowhiskers was explained by the extension of the electron depletion layer due to the formation of nanoscale p-n junctions between p-type NiO and n-type ZnO. Hence, these products provide new alternative proficient photocatalysts for wastewater treatment.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1379
Author(s):  
Jiraporn Buasakun ◽  
Phakinee Srilaoong ◽  
Ramida Rattanakam ◽  
Tanwawan Duangthongyou

The heterostructure of ZnO and MOF-46(Zn) was synthesized to improve the photocatalytic performance of ZnO and prove the synergistic theory that presented the coexistence of ZnO and MOF-46(Zn), providing better efficiency than pure ZnO. The heterostructure material was synthesized by using prepared ZnO as a Zn2+ source, which was reacted with 2-aminoterephthalic acid (2-ATP) as a ligand to cover the surface of ZnO with MOF-46(Zn). The ZnO reactant materials were modified by pyrolysis of various morphologies of IRMOF-3 (Zn-MOF) prepared by using CTAB as a morphology controller. The octahedral ZnO obtained at 150 mg of CTAB shows better efficiency for photodegradation, with 85.79% within 3 h and a band gap energy of 3.11 eV. It acts as a starting material for synthesis of ZnO@MOF-46(Zn). The ZnO/MOF-46(Zn) composite was further used as a photocatalyst material in the dye (methylene blue: MB) degradation process, and the performance was compared with that of pure prepared ZnO. The results show that the photocatalytic efficiency with 61.20% in the MB degradation of the heterostructure is higher than that of pure ZnO within 60 min (90.09% within 180 min). The reason for this result may be that the coexistence of ZnO and MOF-46(Zn) can absorb a larger range of energy and reduce the possibility of the electron–hole recombination process.


2021 ◽  
Author(s):  
Preethi Sudarsan ◽  
Vivek Seethapathy ◽  
Priya Ranganathan ◽  
Balakumar S ◽  
Suresh Babu Krishnamoorthy

Abstract Development of heterostructures is one of the constructive strategies for enhancing the photocatalytic activity. Here, novel CuFeO 2 -ZnO heterostructures with different weight percentage (CuFeO 2 = 0.5, 1, 5, 10%) were prepared by two-step precipitation-hydrothermal process. The structural confirmation was done by XRD and Raman analysis. The photocatalytic efficiency of the heterostructures was assessed by the degradation of methylene blue under sunlight. CuFeO 2 -ZnO heterostructures enhanced the photocatalytic performance compared to pure ZnO and CuFeO 2 . Among all, 5 wt % of CuFeO 2 on ZnO exhibited 100% degradation with 16 fold faster kinetics than ZnO. Time-resolved photoluminescent analysis revealed the increase in lifetime of charge carriers in the heterostructure. The band alignments of ZnO and CuFeO 2 , evaluated by Mott–Schottky revealed the existence of Type 1 heterostructures. Further, the heterostructures exhibited good recyclability. Thus, the present work demonstrates the use of p-type CuFeO 2 and n-type ZnO heterostructures as potential photocatalysts.


2020 ◽  
Vol 14 ◽  
pp. 100373
Author(s):  
Willian H. Ferreira ◽  
Leonardo G.A. Silva ◽  
Barbara C.S. Pereira ◽  
Rodrigo F. Gouvêa ◽  
Cristina T. Andrade

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ngoc Tue Nguyen ◽  
Xuan Truong Nguyen ◽  
Duc-Trung Nguyen ◽  
Hong Minh Tran ◽  
Thi May Nguyen ◽  
...  

Metal-organic framework composites, which are combined from metal-organic framework and advanced carbon material, have drawn great attention in many fields of application such as environmental remediation and catalysts. Within this paper, the carbon/MIL-53(Fe) composite was fabricated via an in situ synthesis, in which N-containing carbon dots (NCDs) were mixed with MOF precursors’ solutions under various ratios before going through the solvothermal stage. It was showed that the introduction of a certain amount of NCDs would affect characteristic features and improve the photocatalytic performance of final products. The optimal doping content of NCDs in NCD/MIL-53(Fe) composite was determined. SEM images showed that the M-140 appeared as hexagonal bipyramid-shaped crystals with an average size of 700 nm. Compared with pristine MIL-53(Fe), the M-140 was more visibly light-responsive, and its calculated band gap energy was approximately 2.3 eV. In addition, M-140 catalyst also displayed more excellent photocatalytic activity for Methylene Blue degradation in a pH range from 5 to 7. Under optimal conditions, MB was achieved within 60 minutes and the removal rate was nearly 100% after 5 cycles. The photocatalytic mechanism of the obtained NCD/MIL-53(Fe) composite was discussed.


2013 ◽  
Vol 145 (1) ◽  
pp. 108-114 ◽  
Author(s):  
M. Ahmad ◽  
Z. Iqbal ◽  
Zhanglian Hong ◽  
Jingxia Yang ◽  
Yuewei Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document