scholarly journals Characterizing Endogenous Protein Complexes with Biological Mass Spectrometry

2021 ◽  
Author(s):  
Rivkah Rogawski ◽  
Michal Sharon
2019 ◽  
Author(s):  
Zachary VanAernum ◽  
Florian Busch ◽  
Benjamin J. Jones ◽  
Mengxuan Jia ◽  
Zibo Chen ◽  
...  

It is important to assess the identity and purity of proteins and protein complexes during and after protein purification to ensure that samples are of sufficient quality for further biochemical and structural characterization, as well as for use in consumer products, chemical processes, and therapeutics. Native mass spectrometry (nMS) has become an important tool in protein analysis due to its ability to retain non-covalent interactions during measurements, making it possible to obtain protein structural information with high sensitivity and at high speed. Interferences from the presence of non-volatiles are typically alleviated by offline buffer exchange, which is timeconsuming and difficult to automate. We provide a protocol for rapid online buffer exchange (OBE) nMS to directly screen structural features of pre-purified proteins, protein complexes, or clarified cell lysates. Information obtained by OBE nMS can be used for fast (<5 min) quality control and can further guide protein expression and purification optimization.


2019 ◽  
Vol 16 (4) ◽  
pp. 267-276
Author(s):  
Qurat ul Ain Farooq ◽  
Noor ul Haq ◽  
Abdul Aziz ◽  
Sara Aimen ◽  
Muhammad Inam ul Haq

Background: Mass spectrometry is a tool used in analytical chemistry to identify components in a chemical compound and it is of tremendous importance in the field of biology for high throughput analysis of biomolecules, among which protein is of great interest. Objective: Advancement in proteomics based on mass spectrometry has led the way to quantify multiple protein complexes, and proteins interactions with DNA/RNA or other chemical compounds which is a breakthrough in the field of bioinformatics. Methods: Many new technologies have been introduced in electrospray ionization (ESI) and Matrixassisted Laser Desorption/Ionization (MALDI) techniques which have enhanced sensitivity, resolution and many other key features for the characterization of proteins. Results: The advent of ambient mass spectrometry and its different versions like Desorption Electrospray Ionization (DESI), DART and ELDI has brought a huge revolution in proteomics research. Different imaging techniques are also introduced in MS to map proteins and other significant biomolecules. These drastic developments have paved the way to analyze large proteins of >200kDa easily. Conclusion: Here, we discuss the recent advancement in mass spectrometry, which is of great importance and it could lead us to further deep analysis of the molecules from different perspectives and further advancement in these techniques will enable us to find better ways for prediction of molecules and their behavioral properties.


2021 ◽  
Vol 7 (1) ◽  
pp. 11 ◽  
Author(s):  
André P. Gerber

RNA–protein interactions frame post-transcriptional regulatory networks and modulate transcription and epigenetics. While the technological advances in RNA sequencing have significantly expanded the repertoire of RNAs, recently developed biochemical approaches combined with sensitive mass-spectrometry have revealed hundreds of previously unrecognized and potentially novel RNA-binding proteins. Nevertheless, a major challenge remains to understand how the thousands of RNA molecules and their interacting proteins assemble and control the fate of each individual RNA in a cell. Here, I review recent methodological advances to approach this problem through systematic identification of proteins that interact with particular RNAs in living cells. Thereby, a specific focus is given to in vivo approaches that involve crosslinking of RNA–protein interactions through ultraviolet irradiation or treatment of cells with chemicals, followed by capture of the RNA under study with antisense-oligonucleotides and identification of bound proteins with mass-spectrometry. Several recent studies defining interactomes of long non-coding RNAs, viral RNAs, as well as mRNAs are highlighted, and short reference is given to recent in-cell protein labeling techniques. These recent experimental improvements could open the door for broader applications and to study the remodeling of RNA–protein complexes upon different environmental cues and in disease.


2021 ◽  
Vol 32 (2) ◽  
pp. 569-580
Author(s):  
Anjusha Mathew ◽  
Ronald Buijs ◽  
Gert B. Eijkel ◽  
Frans Giskes ◽  
Andrey Dyachenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document