scholarly journals RNA-Centric Approaches to Profile the RNA–Protein Interaction Landscape on Selected RNAs

2021 ◽  
Vol 7 (1) ◽  
pp. 11 ◽  
Author(s):  
André P. Gerber

RNA–protein interactions frame post-transcriptional regulatory networks and modulate transcription and epigenetics. While the technological advances in RNA sequencing have significantly expanded the repertoire of RNAs, recently developed biochemical approaches combined with sensitive mass-spectrometry have revealed hundreds of previously unrecognized and potentially novel RNA-binding proteins. Nevertheless, a major challenge remains to understand how the thousands of RNA molecules and their interacting proteins assemble and control the fate of each individual RNA in a cell. Here, I review recent methodological advances to approach this problem through systematic identification of proteins that interact with particular RNAs in living cells. Thereby, a specific focus is given to in vivo approaches that involve crosslinking of RNA–protein interactions through ultraviolet irradiation or treatment of cells with chemicals, followed by capture of the RNA under study with antisense-oligonucleotides and identification of bound proteins with mass-spectrometry. Several recent studies defining interactomes of long non-coding RNAs, viral RNAs, as well as mRNAs are highlighted, and short reference is given to recent in-cell protein labeling techniques. These recent experimental improvements could open the door for broader applications and to study the remodeling of RNA–protein complexes upon different environmental cues and in disease.

Open Biology ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 190096 ◽  
Author(s):  
Anna Balcerak ◽  
Alicja Trebinska-Stryjewska ◽  
Ryszard Konopinski ◽  
Maciej Wakula ◽  
Ewa Anna Grzybowska

RNA–protein interactions are crucial for most biological processes in all organisms. However, it appears that the complexity of RNA-based regulation increases with the complexity of the organism, creating additional regulatory circuits, the scope of which is only now being revealed. It is becoming apparent that previously unappreciated features, such as disordered structural regions in proteins or non-coding regions in DNA leading to higher plasticity and pliability in RNA–protein complexes, are in fact essential for complex, precise and fine-tuned regulation. This review addresses the issue of the role of RNA–protein interactions in generating eukaryotic complexity, focusing on the newly characterized disordered RNA-binding motifs, moonlighting of metabolic enzymes, RNA-binding proteins interactions with different RNA species and their participation in regulatory networks of higher order.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2270
Author(s):  
Ronja Weissinger ◽  
Lisa Heinold ◽  
Saira Akram ◽  
Ralf-Peter Jansen ◽  
Orit Hermesh

Multiple cellular functions are controlled by the interaction of RNAs and proteins. Together with the RNAs they control, RNA interacting proteins form RNA protein complexes, which are considered to serve as the true regulatory units for post-transcriptional gene expression. To understand how RNAs are modified, transported, and regulated therefore requires specific knowledge of their interaction partners. To this end, multiple techniques have been developed to characterize the interaction between RNAs and proteins. In this review, we briefly summarize the common methods to study RNA–protein interaction including crosslinking and immunoprecipitation (CLIP), and aptamer- or antisense oligonucleotide-based RNA affinity purification. Following this, we focus on in vivo proximity labeling to study RNA–protein interactions. In proximity labeling, a labeling enzyme like ascorbate peroxidase or biotin ligase is targeted to specific RNAs, RNA-binding proteins, or even cellular compartments and uses biotin to label the proteins and RNAs in its vicinity. The tagged molecules are then enriched and analyzed by mass spectrometry or RNA-Seq. We highlight the latest studies that exemplify the strength of this approach for the characterization of RNA protein complexes and distribution of RNAs in vivo.


2021 ◽  
Vol 4 (1) ◽  
pp. 22
Author(s):  
Mrinmoyee Majumder ◽  
Viswanathan Palanisamy

Control of gene expression is critical in shaping the pro-and eukaryotic organisms’ genotype and phenotype. The gene expression regulatory pathways solely rely on protein–protein and protein–nucleic acid interactions, which determine the fate of the nucleic acids. RNA–protein interactions play a significant role in co- and post-transcriptional regulation to control gene expression. RNA-binding proteins (RBPs) are a diverse group of macromolecules that bind to RNA and play an essential role in RNA biology by regulating pre-mRNA processing, maturation, nuclear transport, stability, and translation. Hence, the studies aimed at investigating RNA–protein interactions are essential to advance our knowledge in gene expression patterns associated with health and disease. Here we discuss the long-established and current technologies that are widely used to study RNA–protein interactions in vivo. We also present the advantages and disadvantages of each method discussed in the review.


2020 ◽  
Author(s):  
Ulrike Anders ◽  
Maya Gulotti-Georgieva ◽  
Susann Zelger-Paulus ◽  
Fatima-Ezzahra Hibti ◽  
Chiraz Frydman ◽  
...  

ABSTRACTRNA maturation is a highly regulated process whose precision is indispensable for the correct transfer of genetic information and, thus, the survival of any living organism. While in higher eukaryotes, this process is known to be assisted by the spliceosome, a very complex system assembled from numerous proteins, in bacteria splicing is catalyzed by ribozymes only. In lower eukaryotes however, e.g., yeast, RNA maturation is also expected to be less complex or simplified. Here, we focus on the mitochondrial group IIB intron RNA Sc.ai5γ from Saccharomyces cerevisiae (Sc.) and Mss116, a protein of the DEAD-box helicase family, known to play a crucial role in the Sc.ai5γ maturation pathway, acting as a co-factor in vivo. Although to date, only Mss116 has been described to be involved in the maturation of Sc.ai5γ, we hypothesize that the folding and splicing of Sc.ai5γ is regulated by more than one protein co-factor, i.e., that a complex or series of several proteins participate in folding and splicing the immature RNA correctly. For the identification of new potential Sc.ai5γ binders we coupled SPR imaging with matrix-assisted laser desorption/ionization mass spectrometry. This combination results in a powerful method to screen for specific RNA-binding proteins from complex mixtures, specifically lysate of the coarse mitochondrial fraction from yeast. Our results indicate that several proteins other than the well-known co-factor Mss116 interact with Sc.ai5γ, namely Dbp8, Prp8, Mrp13, and Cullin-3. With this novel approach, we report the identification of RNA-binding proteins from a crude yeast mitochondrial lysate in a non-targeted approach.


2016 ◽  
Author(s):  
Kevin Drew ◽  
Chanjae Lee ◽  
Ryan L. Huizar ◽  
Fan Tu ◽  
Blake Borgeson ◽  
...  

AbstractMacromolecular protein complexes carry out many of the essential functions of cells, and many genetic diseases arise from disrupting the functions of such complexes. Currently there is great interest in defining the complete set of human protein complexes, but recent published maps lack comprehensive coverage. Here, through the synthesis of over 9,000 published mass spectrometry experiments, we present hu.MAP, the most comprehensive and accurate human protein complex map to date, containing >4,600 total complexes, >7,700 proteins and >56,000 unique interactions, including thousands of confident protein interactions not identified by the original publications. hu.MAP accurately recapitulates known complexes withheld from the learning procedure, which was optimized with the aid of a new quantitative metric (k-cliques) for comparing sets of sets. The vast majority of complexes in our map are significantly enriched with literature annotations and the map overall shows improved coverage of many disease-associated proteins, as we describe in detail for ciliopathies. Using hu.MAP, we predicted and experimentally validated candidate ciliopathy disease genes in vivo in a model vertebrate, discovering CCDC138, WDR90, and KIAA1328 to be new cilia basal body/centriolar satellite proteins, and identifying ANKRD55 as a novel member of the intraflagellar transport machinery. By offering significant improvements to the accuracy and coverage of human protein complexes, hu.MAP (http://proteincomplexes.org) serves as a valuable resource for better understanding the core cellular functions of human proteins and helping to determine mechanistic foundations of human disease.


2021 ◽  
Author(s):  
Sarah E Cabral ◽  
Kimberly Mowry

RNA localization and biomolecular condensate formation are key biological strategies for organizing the cytoplasm and generating cellular and developmental polarity. While enrichment of RNAs and RNA-binding proteins (RBPs) is a hallmark of both processes, the functional and structural roles of RNA-RNA and RNA-protein interactions within condensates remain unclear. Recent work from our laboratory has shown that RNAs required for germ layer patterning in Xenopus oocytes localize in novel biomolecular condensates, termed Localization bodies (L-bodies). L-bodies are composed of a non-dynamic RNA phase enmeshed in a more dynamic protein-containing phase. However, the interactions that drive the biophysical characteristics of L-bodies are not known. Here, we test the role of RNA-protein interactions using an L-body RNA-binding protein, PTBP3, which contains four RNA-binding domains (RBDs). We find that binding of RNA to PTB is required for both RNA and PTBP3 to be enriched in L-bodies in vivo. Importantly, while RNA binding to a single RBD is sufficient to drive PTBP3 localization to L-bodies, interactions between multiple RRMs and RNA tunes the dynamics of PTBP3 within L-bodies. In vitro, recombinant PTBP3 phase separates into non-dynamic structures in an RNA-dependent manner, supporting a role for RNA-protein interactions as a driver of both recruitment of components to L-bodies and the dynamics of the components after enrichment. Our results point to a model where RNA serves as a concentration-dependent, non-dynamic substructure and multivalent interactions with RNA are a key driver of protein dynamics.


2020 ◽  
Author(s):  
Brendan M. Floyd ◽  
Kevin Drew ◽  
Edward M. Marcotte

ABSTRACTProtein phosphorylation is a key regulatory mechanism involved in nearly every eukaryotic cellular process. Increasingly sensitive mass spectrometry approaches have identified hundreds of thousands of phosphorylation sites but the functions of a vast majority of these sites remain unknown, with fewer than 5% of sites currently assigned a function. To increase our understanding of functional protein phosphorylation we developed an approach for identifying the phosphorylation-dependence of protein assemblies in a systematic manner. A combination of non-specific protein phosphatase treatment, size-exclusion chromatography, and mass spectrometry allowed us to identify changes in protein interactions after the removal of phosphate modifications. With this approach we were able to identify 316 proteins involved in phosphorylation-sensitive interactions. We recovered known phosphorylation-dependent interactors such as the FACT complex and spliceosome, as well as identified novel interactions such as the tripeptidyl peptidase TPP2 and the supraspliceosome component ZRANB2. More generally, we find phosphorylation-dependent interactors to be strongly enriched for RNA-binding proteins, providing new insight into the role of phosphorylation in RNA binding. By searching directly for phosphorylated amino acid residues in mass spectrometry data, we identified the likely regulatory phosphosites on ZRANB2 and FACT complex subunit SSRP1. This study provides both a method and resource for obtaining a better understanding of the role of phosphorylation in native macromolecular assemblies.


2020 ◽  
Author(s):  
Clémentine Delan-Forino ◽  
Christos Spanos ◽  
Juri Rappsilber ◽  
David Tollervey

ABSTRACTDuring nuclear surveillance in yeast, the RNA exosome functions together with the TRAMP complexes. These include the DEAH-box RNA helicase Mtr4 together with an RNA-binding protein (Air1 or Air2) and a poly(A) polymerase (Trf4 or Trf5). To better determine how RNA substrates are targeted, we analyzed protein and RNA interactions for TRAMP components. Mass spectrometry identified three distinct TRAMP complexes formed in vivo. These complexes preferentially assemble on different classes of transcripts. Unexpectedly, on many substrates, including pre-rRNAs and pre-mRNAs, binding specificity was apparently conferred by Trf4 and Trf5. Clustering of mRNAs by TRAMP association showed co-enrichment for mRNAs with functionally related products, supporting the significance of surveillance in regulating gene expression. We compared binding sites of TRAMP components with multiple nuclear RNA binding proteins, revealing preferential colocalization of subsets of factors. TRF5 deletion reduced Mtr4 recruitment and increased RNA abundance for mRNAs specifically showing high Trf5 binding.


2020 ◽  
Vol 48 (9) ◽  
pp. e52-e52 ◽  
Author(s):  
Ziheng Zhang ◽  
Weiping Sun ◽  
Tiezhu Shi ◽  
Pengfei Lu ◽  
Min Zhuang ◽  
...  

Abstract No RNA is completely naked from birth to death. RNAs function with and are regulated by a range of proteins that bind to them. Therefore, the development of innovative methods for studying RNA–protein interactions is very important. Here, we developed a new tool, the CRISPR-based RNA-United Interacting System (CRUIS), which captures RNA–protein interactions in living cells by combining the power of CRISPR and PUP-IT, a novel proximity targeting system. In CRUIS, dCas13a is used as a tracker to target specific RNAs, while proximity enzyme PafA is fused to dCas13a to label the surrounding RNA-binding proteins, which are then identified by mass spectrometry. To identify the efficiency of CRUIS, we employed NORAD (Noncoding RNA activated by DNA damage) as a target, and the results show that a similar interactome profile of NORAD can be obtained as by using CLIP (crosslinking and immunoprecipitation)-based methods. Importantly, several novel NORAD RNA-binding proteins were also identified by CRUIS. The use of CRUIS facilitates the study of RNA–protein interactions in their natural environment, and provides new insights into RNA biology.


2021 ◽  
Author(s):  
Baptiste Kerouanton ◽  
Sebastian Schafer ◽  
Lena Ho ◽  
Sonia Chothani ◽  
Owen JL Rackham

Motivation: The creation and analysis of gene regulatory networks have been the focus of bioinformatic research and underpins much of what is known about gene regulation. However, as a result of a bias in the availability of data-types that are collected, the vast majority of gene regulatory network resources and tools have focused on either transcriptional regulation or protein-protein interactions. This has left other areas of regulation, for instance translational regulation, vastly underrepresented despite them having been shown to play a critical role in both health and disease. Results: In order to address this we have developed CLIPreg, a package that integrates RNA, Ribo and CLIP- sequencing data in order to construct translational regulatory networks coordinated by RNA-binding proteins. This is the first tool of its type to be created, allowing for detailed investigation into a previously unseen layer of regulation.


Sign in / Sign up

Export Citation Format

Share Document