Pore Characteristics and Methane Adsorption Capacity of Different Lithofacies of the Wufeng Formation–Longmaxi Formation Shales, Southern Sichuan Basin

2020 ◽  
Vol 34 (7) ◽  
pp. 8046-8062 ◽  
Author(s):  
Ziqi Feng ◽  
Fang Hao ◽  
Shangwen Zhou ◽  
Wei Wu ◽  
Jinqiang Tian ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6836
Author(s):  
Hongyan Wang ◽  
Shangwen Zhou ◽  
Jiehui Zhang ◽  
Ziqi Feng ◽  
Pengfei Jiao ◽  
...  

The effect of clay minerals on the methane adsorption capacity of shales is a basic issue that needs to be clarified and is of great significance for understanding the adsorption characteristics and mechanisms of shale gas. In this study, a variety of experimental methods, including XRD, LTNA, HPMA experiments, were conducted on 82 marine shale samples from the Wufeng–Longmaxi Formation of 10 evaluation wells in the southern Sichuan Basin of China. The controlling factors of adsorption capacities were determined through a correlation analysis with pore characteristics and mineral composition. In terms of mineral composition, organic matter (OM) is the most key methane adsorbent in marine shale, and clay minerals have little effect on methane adsorption. The ultra-low adsorption capacity of illite and chlorite and the hydrophilicity and water absorption ability of clay minerals are the main reasons for their limited effect on gas adsorption in marine shales. From the perspective of the pore structure, the micropore and mesopore specific surface areas (SSAs) control the methane adsorption capacity of marine shales, which are mainly provided by OM. Clay minerals have no relationship with SSAs, regardless of mesopores or micropores. In the competitive adsorption process of OM and clay minerals, OM has an absolute advantage. Clay minerals become carriers for water absorption, due to their interlayer polarity and water wettability. Based on the analysis of a large number of experimental datasets, this study clarified the key problem of whether clay minerals in marine shales control methane adsorption.


2020 ◽  
Vol 8 (2) ◽  
pp. T403-T419
Author(s):  
Panke Sun ◽  
Hanqing Zhu ◽  
Huaimin Xu ◽  
Xiaoni Hu ◽  
Linfeng Tian

As a national shale-gas demonstration zone in China, the Zhaotong area has great gas resource potential. However, the nanopore structure characteristics, methane adsorption capacity, and their affecting factors of the Lower Silurian Longmaxi Shale in this area remain unclear. To address these puzzles, we conducted a series of experiments, such as X-ray diffraction, field emission scanning electron microscopy, low-pressure [Formula: see text] adsorption, and high-pressure methane adsorption, and we calculated the relevant characteristic parameters, such as pore volume (PV), specific surface area (SSA), fractal dimension, and Langmuir parameters by using the nonlocal density functional theory method, Frenkel-Halsey-Hill theory, and Langmuir model, respectively. The results indicate that the nanopores of the Lower Longmaxi Shale in the Zhaotong area are composed of micropores and mesopores, which mainly exist as organic matter (OM) pores. The pore surface exhibits a high degree of heterogeneity as indicated by the fractal dimensions ranging from 2.845 to 2.866. The nanopore structure characteristics (i.e., SSA and PV) and methane adsorption capacity are mainly controlled by the total organic carbon (TOC) content. In addition, the mineralogical composition (i.e., the quartz and clay content) also contributes significantly to the micropore PV and gas content. The external provenance has a significant effect on the mineralogical composition, TOC content, and methane adsorption capacity. With the increasing influence of the external provenance, the biogenic quartz content decreases and the relationship between the quartz content and TOC content becomes more discrete, which indicates the change of depositional environment, and the clay content increases, which can dilute the OM concentration during the deposition and enhance the compaction potential, and it can eventually result in less gas content. The results of this study reveal the nanopore system characteristics of the Longmaxi Shale in the Zhaotong area and provide further insight into the influence of external provenance on reservoir characteristics and gas content variability of the Lower Longmaxi Shale in the southern Sichuan Basin.


2017 ◽  
Vol 2 (2) ◽  
pp. 156-168 ◽  
Author(s):  
Wenming Ji ◽  
Yan Song ◽  
Zhenxue Jiang ◽  
Mianmo Meng ◽  
Qingxin Liu ◽  
...  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xianglu Tang ◽  
Wei Wu ◽  
Guanghai Zhong ◽  
Zhenxue Jiang ◽  
Shijie He ◽  
...  

Adsorbed gas is an important component of shale gas. The methane adsorption capacity of shale determines the composition of shale gas. In this study, the methane adsorption capacity of marine, transitional, and lacustrine shales in the Sichuan Basin was analyzed through its isothermal adsorption, mineral composition, water content, etc. The results show that the methane adsorption capacity of marine (Qiongzhusi Formation and Longmaxi Formation), transitional (Longtan Formation), and lacustrine (Xujiahe Formation and Ziliujing Formation) shales is significantly different. The Longtan Formation has the strongest methane adsorption capacity. This is primarily related to its high organic matter and organic matter type III content. The methane adsorption capacity of the lacustrine shale was the weakest. This is primarily related to the low thermal evolution degree and the high content of water-bearing clay minerals. Smectite has the highest methane adsorption capacity of the clay minerals, due to its crystal structure. The water content has a significant effect on methane adsorption largely because water molecules occupy the adsorption site. Additionally, the temperature and pressure in a specific range significantly affect methane adsorption capacity.


Fractals ◽  
2019 ◽  
Vol 27 (01) ◽  
pp. 1940011 ◽  
Author(s):  
LEI CHEN ◽  
ZHENXUE JIANG ◽  
KEYU LIU ◽  
WEI YANG ◽  
SHU JIANG ◽  
...  

To better understand the nanopore characteristics and their effects on methane adsorption capacity of shales, we performed fractal analysis of nine shale samples collected from the fifth member of Upper Triassic Xujiahe Formation in the Sichuan Basin, southwest China. [Formula: see text] adsorption results show that shales have different adsorption characteristics at relative pressure of 0–0.5 and 0.5–1. Two fractal dimensions [Formula: see text] and [Formula: see text] were calculated using the Frenkel–Halsey–Hill (FHH) equation. Results show that the methane adsorption capacity increases with the increase of [Formula: see text] and [Formula: see text], of which [Formula: see text] has a more significant influence on adsorption capacity than [Formula: see text]. Further studies indicate that [Formula: see text] represents the pore surface fractal characteristics caused by the irregularity of shale surface, whereas [Formula: see text] represents the pore structure fractal characteristics, which is mainly affected by shale components (e.g. TOC, clay minerals) and pore parameters (e.g. average pore diameter, micropores content). A higher [Formula: see text] corresponds to a more irregular pore surface, which provides more space for methane adsorption. While a higher [Formula: see text] indicates a more complex pore structure and a stronger capillary condensation action on the pore surface, which in turn enhances the methane adsorption capacity.


2019 ◽  
Vol 33 (3) ◽  
pp. 2078-2089 ◽  
Author(s):  
Yang Wang ◽  
Luofu Liu ◽  
Yue Sheng ◽  
Ximeng Wang ◽  
Shanshan Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document