Membrane Evaporation for Energy Saving in CO2 Chemical Absorption Process Using a Polybenzimidazole Film: Mass and Heat Transfer

2017 ◽  
Vol 31 (10) ◽  
pp. 11091-11098 ◽  
Author(s):  
Qinhui Ma ◽  
Mengxiang Fang ◽  
Tao Wang ◽  
Hai Yu ◽  
Paul H. M. Feron
2016 ◽  
Vol 13 (1) ◽  
pp. 53
Author(s):  
Siti Nabihah Jamaludin ◽  
Ruzitah Mohd Salleh

Anthropogenic CO2 emissions has led to global climate change and widely contributed to global warming since its concentration has been increasing over time. It has attracted vast attention worldwide. Currently, the different CO2 capture technologies available include absorption, solid adsorption and membrane separation. Chemical absorption technology is regarded as the most mature technology and is commercially used in the industry. However, the key challenge is to find the most efficient solvent in capturing CO2. This paper reviews several types of CO2 capture technologies and the various factors influencing the CO2 absorption process, resulting in the development of a novel solvent for CO2 capture.


2018 ◽  
Vol 17 (4) ◽  
pp. 813-820 ◽  
Author(s):  
Lacramioara Rusu ◽  
Maria Harja ◽  
Gabriela Ciobanu ◽  
Liliana Lazar

Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 507
Author(s):  
Chrysovalantis C. Templis ◽  
Nikos G. Papayannakos

Mass and heat transfer coefficients (MTC and HTC) in automotive exhaust catalytic monolith channels are estimated and correlated for a wide range of gas velocities and prevailing conditions of small up to real size converters. The coefficient estimation is based on a two dimensional computational fluid dynamic (2-D CFD) model developed in Comsol Multiphysics, taking into account catalytic rates of a real catalytic converter. The effect of channel size and reaction rates on mass and heat transfer coefficients and the applicability of the proposed correlations at different conditions are discussed. The correlations proposed predict very satisfactorily the mass and heat transfer coefficients calculated from the 2-D CFD model along the channel length. The use of a one dimensional (1-D) simplified model that couples a plug flow reactor (PFR) with mass transport and heat transport effects using the mass and heat transfer correlations of this study is proved to be appropriate for the simulation of the monolith channel operation.


2020 ◽  
Vol 93 (3) ◽  
pp. 509-518
Author(s):  
V. G. Bashtovoi ◽  
A. G. Reks ◽  
P. P. Kuzhir ◽  
A. Yu. Zubarev ◽  
V. S. Moroz

2012 ◽  
Vol 455-456 ◽  
pp. 284-288
Author(s):  
Wei Li Gu ◽  
Jian Xiang Liu

this paper studies the typical irreversible processes such as combustion and heat transfer with temperature difference based on the theory of thermodynamics, analyzes the influencing factors on exergy loss in irreversible processes, on the basis of this analysis, proposes the energy-saving optimization measures on design and operation management of the organic heat transfer material heater, and specially points out that in the design process, objective function can be constructed with the exergy loss as evaluation index to determine the outlet flue gas temperature of furnace and the flue gas temperature, and provides theoretical basis for the determination of design parameters.


Energy Policy ◽  
2007 ◽  
Vol 35 (10) ◽  
pp. 5109-5116 ◽  
Author(s):  
Ho-Jun Song ◽  
Seungmoon Lee ◽  
Sanjeev Maken ◽  
Se-Woong Ahn ◽  
Jin-Won Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document