scholarly journals Catalytic Steam and Partial Oxidation Reforming of Liquid Fuels for Application in Improving the Efficiency of Internal Combustion Engines

2018 ◽  
Vol 32 (2) ◽  
pp. 2267-2281 ◽  
Author(s):  
D. William Brookshear ◽  
Josh A. Pihl ◽  
James P. Szybist
Author(s):  
Michael G. Waller ◽  
Mark R. Walluk ◽  
Thomas A. Trabold

The Environmental Protection Agency (EPA) has estimated that 5% of air pollutants originate from small internal combustion engines (ICE) used in non-automotive applications. While there have been significant advances towards developing more sustainable systems to replace large ICEs, few designs have been implemented with the capability to replace small ICEs such as those used in the residential sector for lawn and garden equipment. Replacing these small residential internal combustion engines presents a unique opportunity for early market penetration of fuel cell technologies. This paper describes the initial efforts to build an innovative residential-scale fuel cell system using propane as its fuel source, and the deployment of this technology in a commonly used device found throughout the U.S. There are three main components to this program, including the development of the propane reforming system, fuel cell operation, and the overall system integration. This paper presents the reforming results of propane catalytic partial oxidation (cPOx). The primary parameters used to evaluate the reformer in this experiment were reformate composition, carbon concentration in the effluent, and reforming efficiency as a function of catalyst temperature and O2/C ratio. When including the lower heating value (LHV) for product hydrogen and carbon monoxide, maximum efficiencies of 84% were achieved at an O2/C ratio of 0.53 and a temperature of 940°C. Significant solid carbon formation was observed at catalyst temperatures below 750°C.


2013 ◽  
Vol 155 (4) ◽  
pp. 3-15
Author(s):  
Hans LENZ

For many decades to come, and in the foreseeable future, internal combustion engines – in many cases with electric motors – will be with us, just like the liquid fuels they require. The importance of crude oil will decline, as these fuels will be increasingly produced on a synthetic basis without CO2 emissions. The answers to the question ”Future Mobility without Internal Combustion Engines and Fuels?“ are “no” in both cases. Purely battery-electric mobility will be applied in the future only in specific areas. Fuel-cell vehicles will hardly be used because of the extreme infrastructure investment costs. In contrast, liquid fuels will ensure the future of mobility. In this scenario, energy such as solar or wind energy will be generated without CO2 emissions.


Author(s):  
Luka Lešnik ◽  
Breda Kegl ◽  
Eloísa Torres-Jiménez ◽  
Fernando Cruz-Peragón

The majority of on-road vehicles today are powered by internal combustion engines, which are, in most cases, burning petroleum-derived liquid fuels mixed with bio-components. The power to weight ratio of internal combustion engines combined with the high energy content of conventional fuels, which can be refilled easily in matter of minutes, makes them ideal for all kinds of road transportation. Since the introduction of EURO emissions norms, the emissions from the Transport sector in the European Union have undergone significant reduction. There are several alternatives to fossil fuels with similar properties, which can replace their usage in the Transport sector. The main focus of research in recent decades has been on biofuels, which can be produced from several sources. The production of biofuels is usually energy more intensive than production of fossil fuels, but their usage can contribute to emission reduction in the Transport sector. In recent years, a lot of effort was also put into promotion of electric vehicles as zero emissions vehicles. This statement should be reconsidered, since the greenhouse impact of electrical vehicles is not negligible. Conversely, in some cases, an electrical vehicle can have an even higher emission impact than modern vehicles with sophisticated internal combustion engines. This is characteristic for countries where the majority of the electricity is produced in coal power plants. With the decrease of greenhouse gas emissions in the Electricity Production sector, and with the increase of battery capacity, the role of electric vehicles in the Transport sector will probably increase. Despite significant research and financial investments in electric vehicles development, the transport sector in near future will be mostly powered by internal combustion engines and petroleum-derived liquid fuels. The amount of pollution from transport sector will be further regulated with stricter emission norms combined with smaller amount of alternative fuel usage.


2018 ◽  
Vol XIX (1) ◽  
pp. 535-549
Author(s):  
Moroianu Corneliu

The running of the Diesel marine engines under maximum safe conditions at the best economical and working parameters is one of the main requirements of a good navigation on the Seven Seas. This paper is proposed to present some essential aspects related to the internal combustion engines with gas and liquid fuels supply upon the working performance of the engine.


Sign in / Sign up

Export Citation Format

Share Document