Selected Physicochemical Properties of Diethyl Ether/Rapeseed Oil Blends and Their Impact on Diesel Engine Smoke Opacity

2018 ◽  
Vol 32 (2) ◽  
pp. 1796-1803 ◽  
Author(s):  
Krzysztof Górski ◽  
Ruslans Smigins
Author(s):  
R Longwic ◽  
D Czerwonka ◽  
M Górska ◽  
A Hernik

1996 ◽  
Vol 54 (4) ◽  
pp. 345-354 ◽  
Author(s):  
O.M.I. Nwafor ◽  
G. Rice

Transport ◽  
2005 ◽  
Vol 20 (5) ◽  
pp. 186-194 ◽  
Author(s):  
Gvidonas Labeckas ◽  
Stasys Slavinskas

During engine operation at 1 400, 1 800 and 2 200 min‐1 the brake specific fuel consumption has on an average been increased by 0,104 %, 0,134 % and 0,156 % for every 1 % point increase in RO inclusion into DF. The maximum thermal efficiency values remain within 0,37–0,39 intervals. The maximum NOx emission increases with the mass percent of oxygen in the fuel blend and for RO and its blends RO75 and RO50 are higher by 9,2 %, 20,7 % and 5,1 %, respectively. Emissions of NO2 increase with an increasing content of RO premixed into DF. When operating on pure RO and its blends RO75 and RO50 the maximum CO emission reduces by 40,5 % ‐52,9 % and 7,2 %‐15,0 %, respectively. The smoke opacity generated from RO and its blends is also by 27,1% ‐34,6 % and 41,7 % ‐51,0 % lower. Emissions of HC remain on a considerably low level ranging between 8 to 16 ppm whereas during engine operation on pure RO they approach to about a zero level. Emissions of CO2 for RO and fuel blend RO75 are slightly higher.


2021 ◽  
Vol 6 (1) ◽  
pp. 1-6
Author(s):  
Mohamed Yagoub Alkhalil Karar ◽  
Hamid M. Mustafa ◽  
Eltjani EL. Hago

This study was conducted to investigate physicochemical properties, copper corrosion test and test the diesel engine performance of diethyl ether diesel blend fuel. With aid of distillation characteristic, the blends percentage were selected as DEE5%, DEE10, DEE15 and DEE20%. Stabinger Viscometer apparatus was used to determine the Kinematic viscosities, Digital Density Analyzer was used to determine the densities. ASTM D 4737 – 03 Test Method are used to determined calculated Cetane index. Copper strip corrosion device was used to determine corrosiveness of copper from diesel and DEE diesel blends. A single cylinder, four stroke diesel engines, mounted on a moving frame was used to conduct the engine test. From the study result we found that that blends physicochemical properties improved with diethyl ether ratio increased in the blends. While Cetane Index increased with diethyl ether ratio increased. At the higher load, the best result of Break thermal efficiency found at DEE10%, where at the low load, the best mechanical efficiency found at DEE5%, DEE15% and DEE20 and at the higher load, the best mechanical efficiency found at DEE20%, on other hand at the low load, the best specific fuel consumption found at DEE15%, While at the higher load the best specific fuel consumption found at DEE10%. Due to availability of diethyl ether in Sudan, diethyl ether can be used up to 10% in diesel blend with no further changed in diesel engine design, and this can be contributed to overcome the diesel fuel crisis in Sudan, but further information and studies are needed for diethyl ether transportation and blending facilities, beside study the effect the addition of diethyl ether on diesel price.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3788 ◽  
Author(s):  
Ruslans Smigins ◽  
Arturs Zakis

This article presents results of experimental study of diesel, rapeseed oil and three different blends of 10%, 20% and 30% diethyl ether addition to rapeseed oil, tested on VW Golf vehicle on chassis dynamometer Mustang MD-1750. Fuel consumption and emission tests were conducted at different testing conditions: idling, 50 km/h, 90 km/h, as also IM-240 cycle. The analysis of obtained results have shown reduction of engine power by 6.2%–17.3% and increase of fuel consumption by 0.6%–15.5% (based on testing conditions) for all blends based on DEE addition compared to RO, demonstrating better perspectives for low level blends. Emission tests have shown decrease of hydrocarbons and nitrogen oxides (NOx) for all blends with DEE content in almost all testing conditions and also slight increase of carbon monoxides and carbon dioxides compared to rapeseed oil. Largest decrease of NOx was observed during 90 km/h and cycle IM-240 reaching almost 24% reduction for 20DEE and 30DEE in comparison to neat RO.


2012 ◽  
Vol 95 ◽  
pp. 139-146 ◽  
Author(s):  
L. Labecki ◽  
A. Cairns ◽  
J. Xia ◽  
A. Megaritis ◽  
H. Zhao ◽  
...  

Transport ◽  
2010 ◽  
Vol 25 (2) ◽  
pp. 116-128 ◽  
Author(s):  
Gvidonas Labeckas ◽  
Stasys Slavinskas

The article deals with the testing results of a four stroke four cylinder, DI diesel engine operating on pure rapeseed oil (RO) and its 2.5vol%, 5vol% and 7.5vol% blends with ethanol (ERO) and petrol (PRO). The purpose of this study is to examine the effect of ethanol and petrol addition to RO on blend viscosity, percentage changes in brake mean effective pressure (bmep), brake specific fuel consumption (bsfc), the brake thermal efficiency (çe) of a diesel engine and its emission composition, including NO, NO2, NOX, CO, CO2, HC and the smoke opacity of exhausts. The addition of 2.5, 5 and 7.5vol% of ethanol and the same percentage of petrol into RO, at a temperature of 20 °C, diminish the viscosity of the blends by 9.2%, 21.3%, 28.3% and 14.1%, 24.8%, 31.7% respectively. Heating biofuels up to a temperature of 60 °C, diminishes the kinematic viscosity of RO, blends ERO2.5–7.5 and PRO2.5–7.5 4.2, 3.9–3.8 and 3.9–3.7 times accordingly. At a speed of 1400–1800 min‐1, bmep higher by 1.3% if compared with that of RO (0.772–0.770 MPa) ensures blend PRO2.5, whereas at a rated speed of 2200 min‐1 , bmep higher by 5.6–2.7% can be obtained when fuelling the loaded engine, ë = 1.6, with both PRO2.5–5 blends. The bsfc of the engine operating on blend PRO2.5 at maximum torque and rated power is respectively 3.0% and 5.5% lower. The highest brake thermal efficiency at maximum torque (0.400) and rated power (0.415) compared to that of RO (0.394) also suggests blend PRO2.5. The largest increase in NOXemissions making 1907 ppm (24.8%) and 1811 ppm (19.6%) compared to that of RO was measured from a more calorific blend PRO7.5 (9.99% oxygen) at low (1400 min‐1) and rated (2200 min‐1) speeds. The emission of carbon monoxide from blends ERO2.5–5 throughout the whole speed range runs lower from 6.1% to 32.9% and the smoke opacity of the fully loaded engine changes from 5.1% which is a higher to 46.4% which is a lower level if compared to the corresponding data obtained using pure RO. The CO2 emissions of carbon monoxide and the temperature of the exhausts generated by the engine running at a speed of 2200 min‐1 diminish from 7.8 vol% to 6.3vol% and from 500 °C to 465 °C due to the addition of 7.5vol% of ethanol to RO.


Sign in / Sign up

Export Citation Format

Share Document