Ramped Temperature Oxidation Testing and In Situ Combustion Projects

2018 ◽  
Vol 32 (8) ◽  
pp. 8040-8056 ◽  
Author(s):  
Donald G. Mallory ◽  
R. Gordon Moore ◽  
Sudarshan A. Mehta
2014 ◽  
Author(s):  
E. A. Cavanzo ◽  
S. F. Muñoz ◽  
A.. Ordoñez ◽  
H.. Bottia

Abstract In Situ Combustion is an enhanced oil recovery method which consists on injecting air to the reservoir, generating a series of oxidation reactions at different temperature ranges by chemical interaction between oil and oxygen, the high temperature oxidation reactions are highly exothermic; the oxygen reacts with a coke like material formed by thermal cracking, they are responsible of generating the heat necessary to sustain and propagate the combustion front, sweeping the heavy oil and upgrading it due to the high temperatures. Wet in situ combustion is variant of the process, in which water is injected simultaneously or alternated with air, taking advantage of its high heat capacity, so the steam can transport heat more efficiently forward the combustion front due to the latent heat of vaporization. A representative model of the in situ combustion process is constituted by a static model, a dynamic model and a kinetic model. The kinetic model represents the oxidative behavior and the compositional changes of the crude oil; it is integrated by the most representative reactions of the process and the corresponding kinetic parameters of each reaction. Frequently, the kinetic model for a dry combustion process has Low Temperature Oxidation reactions (LTO), thermal cracking reactions and the combustion reaction. For the case of wet combustion, additional aquathermolysis reactions take place. This article presents a full review of the kinetic models of the wet in situ combustion process taking into account aquathermolysis reactions. These are hydrogen addition reactions due to the chemical interaction between crude oil and steam. The mechanism begins with desulphurization reactions and subsequent decarboxylation reactions, which are responsible of carbon monoxide production, which reacts with steam producing carbon dioxide and hydrogen; this is the water and gas shift reaction. Finally, during hydrocracking and hydrodesulphurization reactions, hydrogen sulfide is generated and the crude oil is upgraded. An additional upgrading mechanism during the wet in situ combustion process can be explained by the aquathermolysis theory, also hydrogen sulphide and hydrogen production can be estimated by a suitable kinetic model that takes into account the most representative reactions involved during the combustion process.


Coatings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 292 ◽  
Author(s):  
Qianqian Jia ◽  
Deyuan Li ◽  
Shumei Li ◽  
Zhuang Zhang ◽  
Nannan Zhang

An Al/Ni composite coating was deposited on the surface of a pure Ti substrate by arc spray technology and plasma spray technology. In order to enable the in-situ reaction between the Al/Ni composite coating and the specimen, they were heated under different conditions. In addition, oxidation testing was conducted to test the oxidation-resistant property of the coating. The phase transition regulation of the coating after heating, the influence of heating at different temperatures and time on the reaction depth, and the correlated theory of the in-situ formation of the NiAl intermetallic compounds were studied and analyzed. The results showed that after the heat treatment, a ragged wave-like morphology was exhibited in the diffusion front of Al, and a small amount of the Ni in the diffusion region did not participate in the reaction. The growth of the NiAl intermetallic layer in the diffusion region of the Al/Ni/Ti specimen was obviously slower compared with the Al/Ni specimen.


SPE Journal ◽  
2011 ◽  
Vol 16 (03) ◽  
pp. 537-547 ◽  
Author(s):  
Murat Cinar ◽  
Berna Hasçakir ◽  
Louis M. Castanier ◽  
Anthony R. Kovscek

Summary One method to access unconventional heavy-crude-oil resources as well as residual oil after conventional recovery operations is to apply in-situ combustion (ISC) enhanced oil recovery. ISC oxidizes in place a small fraction of the hydrocarbon, thereby providing heat to reduce oil viscosity and increase reservoir pressure. Both effects serve to enhance recovery. The complex nature of petroleum as a multicomponent mixture and the multistep character of combustion reactions substantially complicate analysis of crude-oil oxidation and the identification of settings where ISC could be successful. In this study, isoconversional analysis of ramped temperature-oxidation (RTO) kinetic data was applied to eight different crude-oil samples. In addition, combustion-tube runs that explore ignition and combustion-front propagation were carried out. By using experimentally determined combustion kinetics of eight crude-oil samples along with combustion-tube results, we show that isoconversional analysis of RTO data is useful to predict combustion-front propagation. Isoconversional analysis also provides new insight into the nature of the reactions occurring during ISC. Additionally, five of the 10 crude-oil/rock systems studied employed a carbonate rock. No system displayed excessive oxygen consumption resulting from carbonate decomposition at combustion temperatures. This result is encouraging as it contributes to widening of the applicability of ISC.


2009 ◽  
Vol 12 (04) ◽  
pp. 508-517 ◽  
Author(s):  
Alexandre Lapene ◽  
Louis Castanier ◽  
Gerald Debenest ◽  
Michel Yves Quintard ◽  
Arjan Matheus Kamp ◽  
...  

Summary In-Situ Combustion. In-situ combustion (ISC) is an enhanced oil-recovery method. Enhanced oil recovery is broadly described as a group of techniques used to extract crude oil from the subsurface by the injection of substances not originally present in the reservoir with or without the introduction of extraneous energy (Lake 1996). During ISC, a combustion front is propagated through the reservoir by injected air. The heat generated results in higher temperatures leading to a reduction in oil viscosity and an increase of oil mobility. There are two types of ISC processes, dry and wet combustion. In the dry-combustion process, a large part of the heat generated is left unused downstream of the combustion front in the burned-out region. During the wet-injection process, water is co-injected with the air to recover some of the heat remaining behind the combustion zone. ISC is a very complex process. From a physical point of view, it is a problem coupling transport in porous media, chemistry, and thermodynamics. It has been studied for several decades, and the technique has been applied in the field since the 1950s. The complexity was not well understood earlier by ISC operators. This resulted in a high rate of project failures in the 1960s, and contributed to the misconception that ISC is a problem-prone process with low probability of success. However, ISC is an attractive oil-recovery process and capable of recovering a high percentage of oil-in-place, if the process is designed correctly and implemented in the right type of reservoir (Sarathi 1999). This paper investigates the effect of water on the reaction kinetics of a heavy oil by way of ramped temperature oxidation under various conditions. Reactions. Earlier studies about reaction kinetic were conducted by Bousaid and Ramey (1968), Weijdema (1968), Dabbous and Fulton (1974), and Thomas et al. (1979). In these experiments, temperature of a sample of crude oil and solid matrix was increased over time or kept constant. The produced gas was analyzed to determine the concentrations of outlet gases, such as carbon dioxide, carbon monoxide, and oxygen. This kind of studies shows two types of oxidation reactions, the Low-Temperature Oxidation (LTO) and the High-Temperature Oxidation (HTO) (Burger and Sahuquet 1973; Fassihi et al. 1984a; Mamora et al. 1993). In 1984, Fassihi et al. (1984b) presented an analytical method to obtain kinetics parameters. His method requires several assumptions.


Sign in / Sign up

Export Citation Format

Share Document