Kinetics of Wet In-Situ Combustion: A Review of Kinetic Models

2014 ◽  
Author(s):  
E. A. Cavanzo ◽  
S. F. Muñoz ◽  
A.. Ordoñez ◽  
H.. Bottia

Abstract In Situ Combustion is an enhanced oil recovery method which consists on injecting air to the reservoir, generating a series of oxidation reactions at different temperature ranges by chemical interaction between oil and oxygen, the high temperature oxidation reactions are highly exothermic; the oxygen reacts with a coke like material formed by thermal cracking, they are responsible of generating the heat necessary to sustain and propagate the combustion front, sweeping the heavy oil and upgrading it due to the high temperatures. Wet in situ combustion is variant of the process, in which water is injected simultaneously or alternated with air, taking advantage of its high heat capacity, so the steam can transport heat more efficiently forward the combustion front due to the latent heat of vaporization. A representative model of the in situ combustion process is constituted by a static model, a dynamic model and a kinetic model. The kinetic model represents the oxidative behavior and the compositional changes of the crude oil; it is integrated by the most representative reactions of the process and the corresponding kinetic parameters of each reaction. Frequently, the kinetic model for a dry combustion process has Low Temperature Oxidation reactions (LTO), thermal cracking reactions and the combustion reaction. For the case of wet combustion, additional aquathermolysis reactions take place. This article presents a full review of the kinetic models of the wet in situ combustion process taking into account aquathermolysis reactions. These are hydrogen addition reactions due to the chemical interaction between crude oil and steam. The mechanism begins with desulphurization reactions and subsequent decarboxylation reactions, which are responsible of carbon monoxide production, which reacts with steam producing carbon dioxide and hydrogen; this is the water and gas shift reaction. Finally, during hydrocracking and hydrodesulphurization reactions, hydrogen sulfide is generated and the crude oil is upgraded. An additional upgrading mechanism during the wet in situ combustion process can be explained by the aquathermolysis theory, also hydrogen sulphide and hydrogen production can be estimated by a suitable kinetic model that takes into account the most representative reactions involved during the combustion process.

1974 ◽  
Vol 14 (03) ◽  
pp. 253-262 ◽  
Author(s):  
Mahmoud K. Dabbous ◽  
Paul F. Fulton

Abstract The kinetics of low-temperature oxidation (LTO) of crude oils in porous media was studied. Isothermal integral reactor data were analyzed to obtain rate equations for the over-all rate of the partial oxidation reactions at temperatures below partial oxidation reactions at temperatures below 500 deg. F. The reaction order with respect to oxygen was found to be between 0.5 and 1.0. The order of the reaction was dependent upon the crude but independent of the properties of the porous medium. The activation energy of the reaction was insensitive to the type of crude or porous medium and is in the neighborhood of 31,000 Btu/lb mol. LTO reactions were found to be in the kinitics-influenced region. The measured reaction rates for a 19.9 deg. API and a 27.1 deg. API crude indicated higher oxidation rates under similar reaction conditions for the higher API gravity crude. Light crudes appear to be m ore susceptible to partial oxidation at low temperatures because of the react ed oxidation reactions rather than by carbon oxidation. Other information includes the fraction of reacted oxygen utilized in carbon atom oxidation by the LTO reaction and the molar ratio of CO2 and CO produced in the low-temperature region. Effect of partial oxidation of the crude on the in-situ combustion process was studied by experimentally simulating the zones preceding the combustion front where temperatures and injection rates of linear reservoir model were programmed with time according to a predesigned schedule. Oxidation of the crude at temperatures below 400 deg.F had significant effects on the behavior of the crude-oil/water system in the porous medium at elevated temperatures and on the fuel available for combustion. A substantial decline in the recoverable oil from the evaporation and cracking zones, an increase in fuel deposition, and drastic changes in fuel characteristics and coked sand properties were obtained when the crude was subjected to LTO during the simulation process. Introduction The application of thermal energy to petroleum reservoirs as a means of increasing crude oil recovery has been given a great deal of attention. In underground combustion, thermal energy is induced by the partial burning of the crude oil in situ. The production of heat by the exothermic oxidation reactions of the hydrocarbons constitutes a unique feature of the in-situ combustion process. The chemical reactions and the accompanying heat released create a new temperature profile and cause drastic redistribution in the reservoir fluid saturations. With oxygen available in the transient zones of variable temperature and hydrocarbon saturations, several oxidation reactions of differing nature can take place during an underground combustion process. Because of the complex composition of process. Because of the complex composition of crudes and the great number of reaction products that can be produced, it is convenient to classify the hydrocarbon oxidation reactions ascombustion reactions that take place in the high-temperature combustion zone (above 600 deg. F) with CO2, CO, and H2O as the principal reaction products andpartial oxidation or low-temperature products andpartial oxidation or low-temperature (LTO) reactions that occur in zones where the temperature is lower than 600 deg. F. Several partial oxidation reactions are known to take place, producing primarily water and oxygenated producing primarily water and oxygenated hydrocarbons such as carboxylic acid aldehydes, ketones, alcohols, and hydroperoxides. High-temperature combustion reactions are desirable because they generate most of the heat required for the in-situ combustion process. Partial oxidation reactions, on the other hand, are in most cases undesirable because of their adverse effect on the viscosity and distillation characteristics of the crude. SPEJ P. 253


SPE Journal ◽  
2011 ◽  
Vol 16 (03) ◽  
pp. 537-547 ◽  
Author(s):  
Murat Cinar ◽  
Berna Hasçakir ◽  
Louis M. Castanier ◽  
Anthony R. Kovscek

Summary One method to access unconventional heavy-crude-oil resources as well as residual oil after conventional recovery operations is to apply in-situ combustion (ISC) enhanced oil recovery. ISC oxidizes in place a small fraction of the hydrocarbon, thereby providing heat to reduce oil viscosity and increase reservoir pressure. Both effects serve to enhance recovery. The complex nature of petroleum as a multicomponent mixture and the multistep character of combustion reactions substantially complicate analysis of crude-oil oxidation and the identification of settings where ISC could be successful. In this study, isoconversional analysis of ramped temperature-oxidation (RTO) kinetic data was applied to eight different crude-oil samples. In addition, combustion-tube runs that explore ignition and combustion-front propagation were carried out. By using experimentally determined combustion kinetics of eight crude-oil samples along with combustion-tube results, we show that isoconversional analysis of RTO data is useful to predict combustion-front propagation. Isoconversional analysis also provides new insight into the nature of the reactions occurring during ISC. Additionally, five of the 10 crude-oil/rock systems studied employed a carbonate rock. No system displayed excessive oxygen consumption resulting from carbonate decomposition at combustion temperatures. This result is encouraging as it contributes to widening of the applicability of ISC.


2009 ◽  
Vol 12 (04) ◽  
pp. 508-517 ◽  
Author(s):  
Alexandre Lapene ◽  
Louis Castanier ◽  
Gerald Debenest ◽  
Michel Yves Quintard ◽  
Arjan Matheus Kamp ◽  
...  

Summary In-Situ Combustion. In-situ combustion (ISC) is an enhanced oil-recovery method. Enhanced oil recovery is broadly described as a group of techniques used to extract crude oil from the subsurface by the injection of substances not originally present in the reservoir with or without the introduction of extraneous energy (Lake 1996). During ISC, a combustion front is propagated through the reservoir by injected air. The heat generated results in higher temperatures leading to a reduction in oil viscosity and an increase of oil mobility. There are two types of ISC processes, dry and wet combustion. In the dry-combustion process, a large part of the heat generated is left unused downstream of the combustion front in the burned-out region. During the wet-injection process, water is co-injected with the air to recover some of the heat remaining behind the combustion zone. ISC is a very complex process. From a physical point of view, it is a problem coupling transport in porous media, chemistry, and thermodynamics. It has been studied for several decades, and the technique has been applied in the field since the 1950s. The complexity was not well understood earlier by ISC operators. This resulted in a high rate of project failures in the 1960s, and contributed to the misconception that ISC is a problem-prone process with low probability of success. However, ISC is an attractive oil-recovery process and capable of recovering a high percentage of oil-in-place, if the process is designed correctly and implemented in the right type of reservoir (Sarathi 1999). This paper investigates the effect of water on the reaction kinetics of a heavy oil by way of ramped temperature oxidation under various conditions. Reactions. Earlier studies about reaction kinetic were conducted by Bousaid and Ramey (1968), Weijdema (1968), Dabbous and Fulton (1974), and Thomas et al. (1979). In these experiments, temperature of a sample of crude oil and solid matrix was increased over time or kept constant. The produced gas was analyzed to determine the concentrations of outlet gases, such as carbon dioxide, carbon monoxide, and oxygen. This kind of studies shows two types of oxidation reactions, the Low-Temperature Oxidation (LTO) and the High-Temperature Oxidation (HTO) (Burger and Sahuquet 1973; Fassihi et al. 1984a; Mamora et al. 1993). In 1984, Fassihi et al. (1984b) presented an analytical method to obtain kinetics parameters. His method requires several assumptions.


1972 ◽  
Vol 12 (05) ◽  
pp. 410-422 ◽  
Author(s):  
J.G. Burger

Abstract General remarks on the oxidation reactions of hydrocarbons involved in in-situ combustion are followed by estimates of heat releases. A formula is derived for computing the heat of combustion in the high-temperature zone. Reaction kinetics in porous media applied to the in-situ combustion porous media applied to the in-situ combustion process is discussed. It is observed that there is process is discussed. It is observed that there is some similarity between the kinetics of reverse and partially quenched combustion processes. The influence of additives on crude oil oxidation in porous media is illustrated by effluent gas analysis experiments. Some information concerning the values of the kinetic parameters of the reaction controlling the velocity of a reverse combustion front is derived from the interpretation of laboratory experiments, using a numerical model. Introduction A great deal of laboratory and field work has been done on thermal recovery methods. The importance and limitations of these techniques have been extensively studied. However, some of the chemical and physical problems involved that needed to be elucidated were studied as part of a research program carried out by the Institut Francais du Petrole. Specific problems are created by in-situ combustion since both the possibility of combustion-front propagation and the air requirement are controlled by the extent of the exothermic oxidation reactions. Actually, the propagation velocity of a forward combustion front depends on the fuel formation and combustion, which are controlled by the kinetics of these processes; furthermore, the peak temperature is related to the heat released by oxidation and combustion reactions. Therefore, a quantitative estimation of the parameters related to the chemical aspects of the parameters related to the chemical aspects of the process is a necessary step in studying combustion process is a necessary step in studying combustion through a porous medium. General and theoretical considerations on heats of reaction and kinetics are presented and illustrated by experimental data and numerical interpretation of the results. HEAT RELEASED IN THE OXIDATION OF HYDROCARBONS DESCRIPTION OF OXIDATION REACTIONS A great number of reaction products are produced by the oxidation of hydrocarbons. By taking into account the formation of bonds between one carbon atom and oxygen, it is possible to derive the most important processes. Complete combustion, (1) 2 2 2 2H H3R C R  +  ---- O  → RR  +  CO + H O Incomplete combustion, (2) 2 2H H R C R  +  O  → RR  +  CO  +  H O Oxidation to carboxylic acid, (3) 2 2 2H OH H3 OR C H  +  --- O  → R - C  +  H O Oxidation to aldehyde, (4) H H R C Oxidation to ketone, (5) 2 2H O H R C R '  +  O  → R - C - R;  +  H O Oxidation to alcohol, (6) R' R; R C H SPEJ p. 410


Fuel ◽  
2017 ◽  
Vol 207 ◽  
pp. 179-188 ◽  
Author(s):  
Qianghui Xu ◽  
Zhiming Liu ◽  
Hang Jiang ◽  
Qiang Zhang ◽  
Cheng Zan ◽  
...  

2000 ◽  
Vol 3 (05) ◽  
pp. 380-385 ◽  
Author(s):  
M.V. Kok ◽  
C.O. Karacan

Summary In this study, saturate, aromatic, resin, and asphaltene fractions of two Turkish crude oils (medium and heavy) were separated by column chromatographic techniques. Combustion experiments were performed on whole oils and fractions by a thermogravimetric analyzer (TG/DTG) and differential scanning calorimeter (DSC) by using air and a 10°C/min heating rate. TG and DSC data were analyzed for the determination of weight loss due to possible reactions, and for reaction enthalpies of individual fractions, which have to be known for in-situ combustion technology utilization. Introduction In-situ combustion is a process of recovering oil thermally, by igniting the oil to create a combustion front that is propagated through the reservoir by continuous air injection. Success of such a process depends mainly on the crude oil properties and rock properties as well as operational conditions. In-situ combustion is considered as an effective process not only for heavy oil reserves but also for depleted light and medium oil reservoirs. Unfortunately, the lack of better understanding of the process variables in terms of the conversion of oil during combustion and reservoir characteristics, as well as the costs, limits the more effective application of this technology. In combustion, three different reaction regions were identified, known as low-temperature oxidation, fuel deposition, and high-temperature oxidation. In low-temperature oxidation (LTO), mainly small and weak chains of hydrocarbons are broken and pyrolyzed and oxidized to give ketones, alcohols, etc. In fuel deposition or middle-temperature oxidation, products of low-temperature oxidation are transformed to heavier hydrocarbons to be combusted at higher temperatures. High-temperature oxidation (HTO) is the main combustion region where hydrocarbons are fully oxidized by air. During the course of these processes, hydrocarbons are continuously converted to other types of hydrocarbons, which makes the combustion process very complicated. Heat values and reaction parameters of crude oils are also obtained from differential scanning calorimeter (DSC) thermogravimetry (TG/DTG) experiments. Many studies have been conducted on different phases of the in-situ combustion process, mainly on the fluid and rock interactions during combustion of the fluid phase. Vossoughi et al.1 concluded that the addition of clay to porous media significantly affected the combustion of crude oil. Bae2 investigated the thermo-oxidative behavior and fuel forming properties of various crude oils. The results indicated that oils could be classified according to their oxidation characteristics. Vossoughi3 has used TG/DTG and DSC techniques to study the effect of clay and surface area on the combustion of selected oil samples. The results indicate that there was a significant reduction in the activation energy of the combustion reaction regardless of the chemical composition of additives. Vossoughi and Bartlett4 have developed a kinetic model of the in-situ combustion process from thermogravimetry and differential scanning calorimeter. They used the kinetic model to predict fuel deposition and combustion rate in a combustion tube. Kok5 characterized the combustion properties of two heavy crude oils by DSC and TG/DTG. Individual fractions of the crude oils have been studied before in a variety of purposes in different reactions. Ciajolo and Barbella6 used thermogravimetric techniques to investigate the pyrolysis and oxidation of some heavy fuel oils and their separate paraffinic, aromatic, polar, and asphaltene fractions. The thermal behavior of fuel oil can be interpreted in terms of the low-temperature phase in which the polar and asphaltene fractions pyrolyze and leave a particular carbon residue. Ranjbar and Pusch7 studied the effect of oil composition, characterized on the basis of light hydrocarbons, resin, and asphaltene contents, on the pyrolysis kinetics of the oil. The results indicate that the colloidal composition of oil, as well as the transferability and heat transfer characteristics of the pyrolysis medium, has a pronounced influence on the fuel formation and composition. Karacan and Kok8 studied the pyrolysis behavior of crude oil saturate, aromatic, resin, and asphaltene (SARA) fractions to determine the effect of each constituent to the overall pyrolysis behavior of oils. Several authors, such as Geffen,9 Iyoho,10 and Chu11 have conducted feasibility studies for the in-situ combustion process. Yannimaras and Tiffin12 applied the accelerating rate calorimetry to screen crude oils for applicability of the air-injection/in-situ combustion process. Testing was performed at reservoir conditions for four medium and high gravity oils and results were compared with the combustion tube and air-injection/in-situ combustion process on the basis of continuity of the resulting plot in the region between the LTO and HTO reactions. Although combustion studies on both oil samples and oil-rock mixtures had been conducted, studies on the behavior of crude oil SARA fractions under an oxidizing environment and the investigations on the effects of each of these fractions to the whole oil combustion process have been scarce. This research was conducted to fulfill this partial need in the field of crude oil combustion. The results are aimed to serve for better understanding and accurate modeling of in-situ combustion by using the effects of individual fractions on whole oil combustion. This enables the operators to adapt the changes in the compositional properties of oil during combustion and fine tune the operational parameters.


1982 ◽  
Vol 22 (04) ◽  
pp. 493-502 ◽  
Author(s):  
Shapour Vossoughi ◽  
G. Paul Willhite ◽  
William P. Kritikos ◽  
Ibrahim M. Guvenir ◽  
Youssef El Shoubary

Abstract A fully automated in-situ combustion apparatus supported by a minicomputer was designed, constructed, and tested.Results obtained from four adiabatic dry combustion runs to investigate the effect on clay on crude oil combustion are reported. Sand mixtures of varying clay (kaolinite) content were saturated with crude oil and water. The fourth run was performed with amorphous silica powder in the sand mixture for comparison with clay results.We concluded that the large surface area of the clays was a major contributor to the fuel deposition process. However, different oxygen utilization efficiencies obtained from both types of sand mixtures indicated that mechanisms controlling the combustion reaction also depended on the composition of the porous matrix.A thermogravimetric analyzer (TGA) and a differential scanning calorimeter (DSC) were used to obtain kinetic data on the effects of kaolinite type clay on crude oil combustion. The addition of kaolinite clay or silica powder changed the shape of the crude oil TGA/DSC thermograms significantly, but sand had no effect. The major effect on DSC thermograms was a shifting of the large amount of heat produced from a higher to lower temperature range. Reduction of activation energy caused by the addition of kaolinite clay to the crude oil indicates both catalytic and surface area effects on combustion/cracking reactions. Introduction In-situ combustion is a thermal recovery process in which a portion of the crude oil is coked and burned in situ to recover the remaining oil. Design of the process involves experimental evaluation of process variables in laboratory experiments. Variables sought experimentally for the design of the process are usually fuel availability, air requirement, oxygen utilization efficiency, combustion peak temperature, combustion front velocity, effect of porous matrix, and kinetic parameters. Four methods have been used to obtain design data for in-situ combustion projects. These include (1) adiabatic in-situ combustion tube runs, (2) isothermal reactors, (3) flood pot tests, and (4) thermal analysis techniques.This paper describes an investigation of the effect of clay on in-situ combustion involving results from adiabatic combustion tube runs and thermal analysis methods. Part 1 describes the minicomputer-based insitu combustion system developed as part of the research program. Part 2 demonstrates application of the system to study the effect of clays on the in-situ combustion process. Combustion tube runs described in Part 2 are supplemented with thermal analysis methods to evaluate the effect of clay on in-situ combustion of a Kansas crude oil. Part 1-Development of an Automated In-Situ Combustion Tube Adiabatic tube runs have been the most commonly used approach for studying in-situ combustion. Since heat loss is small to nil in thick reservoirs, in-situ combustion is assumed to occur under adiabatic conditions. Adiabatic conditions in tube runs can be achieved either by insulating the tube or by reducing the temperature gradient between the sandpack and the environment surrounding the tube, or both. To attain adiabatic conditions in a partially or noninsulated tube, the temperature of the surroundings must be raised to that of the sandpack as the combustion front moves along the tube. Heater bands with proportional heat loads controlled by individual controllers are used. This requires a large number of controllers to control the temperature of the outside SPEJ P. 493^


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Alexandra Ushakova ◽  
Vladislav Zatsepin ◽  
Mikhail Varfolomeev ◽  
Dmitry Emelyanov

Despite the abundance of in situ combustion models of oil oxidation, many of the effects are still beyond consideration. For example, until now, initial stages of oxidation were not considered from a position of radical chain process. This is a serious difficulty for the simulation of oil recovery process that involves air injection. To investigate the initial stages of oxidation, the paper considers the sequence of chemical reactions, including intermediate short-living compounds and radicals. We have attempted to correlate the main stages of the reaction with areas of heat release observed in the experiments. The system of differential equations based on the equations of oxidation reactions was solved. Time dependence of peroxides formation and start of heat release is analytically derived for the initial stages. We have considered the inhibition of initial oxidation stages by aromatic oil compounds and have studied the induction time in dependence on temperature. Chain ignition criteria for paraffins and crude oil in presence of core samples were obtained. The calculation results are compared with the stages of oxidation that arise by high-pressure differential scanning calorimetry. According to experimental observations we have determined which reactions are important for the process and which can be omitted or combined into one as insignificant.


2018 ◽  
Vol 350 ◽  
pp. 776-790 ◽  
Author(s):  
Qianghui Xu ◽  
Wei Long ◽  
Hang Jiang ◽  
Cheng Zan ◽  
Jia Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document