Predictability of Crude Oil In-Situ Combustion by the Isoconversional Kinetic Approach

SPE Journal ◽  
2011 ◽  
Vol 16 (03) ◽  
pp. 537-547 ◽  
Author(s):  
Murat Cinar ◽  
Berna Hasçakir ◽  
Louis M. Castanier ◽  
Anthony R. Kovscek

Summary One method to access unconventional heavy-crude-oil resources as well as residual oil after conventional recovery operations is to apply in-situ combustion (ISC) enhanced oil recovery. ISC oxidizes in place a small fraction of the hydrocarbon, thereby providing heat to reduce oil viscosity and increase reservoir pressure. Both effects serve to enhance recovery. The complex nature of petroleum as a multicomponent mixture and the multistep character of combustion reactions substantially complicate analysis of crude-oil oxidation and the identification of settings where ISC could be successful. In this study, isoconversional analysis of ramped temperature-oxidation (RTO) kinetic data was applied to eight different crude-oil samples. In addition, combustion-tube runs that explore ignition and combustion-front propagation were carried out. By using experimentally determined combustion kinetics of eight crude-oil samples along with combustion-tube results, we show that isoconversional analysis of RTO data is useful to predict combustion-front propagation. Isoconversional analysis also provides new insight into the nature of the reactions occurring during ISC. Additionally, five of the 10 crude-oil/rock systems studied employed a carbonate rock. No system displayed excessive oxygen consumption resulting from carbonate decomposition at combustion temperatures. This result is encouraging as it contributes to widening of the applicability of ISC.

2009 ◽  
Vol 12 (04) ◽  
pp. 508-517 ◽  
Author(s):  
Alexandre Lapene ◽  
Louis Castanier ◽  
Gerald Debenest ◽  
Michel Yves Quintard ◽  
Arjan Matheus Kamp ◽  
...  

Summary In-Situ Combustion. In-situ combustion (ISC) is an enhanced oil-recovery method. Enhanced oil recovery is broadly described as a group of techniques used to extract crude oil from the subsurface by the injection of substances not originally present in the reservoir with or without the introduction of extraneous energy (Lake 1996). During ISC, a combustion front is propagated through the reservoir by injected air. The heat generated results in higher temperatures leading to a reduction in oil viscosity and an increase of oil mobility. There are two types of ISC processes, dry and wet combustion. In the dry-combustion process, a large part of the heat generated is left unused downstream of the combustion front in the burned-out region. During the wet-injection process, water is co-injected with the air to recover some of the heat remaining behind the combustion zone. ISC is a very complex process. From a physical point of view, it is a problem coupling transport in porous media, chemistry, and thermodynamics. It has been studied for several decades, and the technique has been applied in the field since the 1950s. The complexity was not well understood earlier by ISC operators. This resulted in a high rate of project failures in the 1960s, and contributed to the misconception that ISC is a problem-prone process with low probability of success. However, ISC is an attractive oil-recovery process and capable of recovering a high percentage of oil-in-place, if the process is designed correctly and implemented in the right type of reservoir (Sarathi 1999). This paper investigates the effect of water on the reaction kinetics of a heavy oil by way of ramped temperature oxidation under various conditions. Reactions. Earlier studies about reaction kinetic were conducted by Bousaid and Ramey (1968), Weijdema (1968), Dabbous and Fulton (1974), and Thomas et al. (1979). In these experiments, temperature of a sample of crude oil and solid matrix was increased over time or kept constant. The produced gas was analyzed to determine the concentrations of outlet gases, such as carbon dioxide, carbon monoxide, and oxygen. This kind of studies shows two types of oxidation reactions, the Low-Temperature Oxidation (LTO) and the High-Temperature Oxidation (HTO) (Burger and Sahuquet 1973; Fassihi et al. 1984a; Mamora et al. 1993). In 1984, Fassihi et al. (1984b) presented an analytical method to obtain kinetics parameters. His method requires several assumptions.


2014 ◽  
Author(s):  
E. A. Cavanzo ◽  
S. F. Muñoz ◽  
A.. Ordoñez ◽  
H.. Bottia

Abstract In Situ Combustion is an enhanced oil recovery method which consists on injecting air to the reservoir, generating a series of oxidation reactions at different temperature ranges by chemical interaction between oil and oxygen, the high temperature oxidation reactions are highly exothermic; the oxygen reacts with a coke like material formed by thermal cracking, they are responsible of generating the heat necessary to sustain and propagate the combustion front, sweeping the heavy oil and upgrading it due to the high temperatures. Wet in situ combustion is variant of the process, in which water is injected simultaneously or alternated with air, taking advantage of its high heat capacity, so the steam can transport heat more efficiently forward the combustion front due to the latent heat of vaporization. A representative model of the in situ combustion process is constituted by a static model, a dynamic model and a kinetic model. The kinetic model represents the oxidative behavior and the compositional changes of the crude oil; it is integrated by the most representative reactions of the process and the corresponding kinetic parameters of each reaction. Frequently, the kinetic model for a dry combustion process has Low Temperature Oxidation reactions (LTO), thermal cracking reactions and the combustion reaction. For the case of wet combustion, additional aquathermolysis reactions take place. This article presents a full review of the kinetic models of the wet in situ combustion process taking into account aquathermolysis reactions. These are hydrogen addition reactions due to the chemical interaction between crude oil and steam. The mechanism begins with desulphurization reactions and subsequent decarboxylation reactions, which are responsible of carbon monoxide production, which reacts with steam producing carbon dioxide and hydrogen; this is the water and gas shift reaction. Finally, during hydrocracking and hydrodesulphurization reactions, hydrogen sulfide is generated and the crude oil is upgraded. An additional upgrading mechanism during the wet in situ combustion process can be explained by the aquathermolysis theory, also hydrogen sulphide and hydrogen production can be estimated by a suitable kinetic model that takes into account the most representative reactions involved during the combustion process.


SPE Journal ◽  
2013 ◽  
Vol 18 (06) ◽  
pp. 1217-1228 ◽  
Author(s):  
Hascakir Berna ◽  
Cynthia M. Ross ◽  
Louis M. Castanier ◽  
Anthony R. Kovscek

Summary In-situ combustion (ISC) is a successful method with great potential for thermal enhanced oil recovery. Field applications of ISC are limited, however, because the process is complex and not well-understood. A significant open question for ISC is the formation of coke or "fuel" in correct quantities that is sufficiently reactive to sustain combustion. We study ISC from a laboratory perspective in 1 m long combustion tubes that allow the monitoring of the progress of the combustion front by use of X-ray computed tomography (CT) and temperature profiles. Two crude oils—12°API (986 kg/m3) and 9°API (1007 kg/m3)—are studied. Cross-sectional images of oil movement and banking in situ are obtained through the appropriate analysis of the spatially and temporally varying CT numbers. Combustion-tube runs are quenched before front breakthrough at the production end, thereby permitting a post-mortem analysis of combustion products and, in particular, the fuel (coke and coke-like residues) just downstream of the combustion front. Fuel is analyzed with both scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). XPS and SEM results are used to identify the shape, texture, and elemental composition of fuel in the X-ray CT images. The SEM and XPS results aid efforts to differentiate among combustion-tube results with significant and negligible amounts of clay minerals. Initial results indicate that clays increase the surface area of fuel deposits formed, and this aids combustion. In addition, comparisons are made of coke-like residues formed during experiments under an inert nitrogen atmosphere and from in-situ combustion. Study results contribute to an improved mechanistic understanding of ISC, fuel formation, and the role of mineral substrates in either aiding or impeding combustion. CT imaging permits inference of the width and movement of the fuel zone in situ.


2021 ◽  
pp. 1-13
Author(s):  
Melek Deniz Paker ◽  
Murat Cinar

Abstract A significant portion of world oil reserves reside in naturally fractured reservoirs and a considerable amount of these resources includes heavy oil and bitumen. Thermal enhanced oil recovery methods (EOR) are mostly applied in heavy oil reservoirs to improve oil recovery. In situ combustion (/SC) is one of the thermal EOR methods that could be applicable in a variety of reservoirs. Unlike steam, heat is generated in situ due to the injection of air or oxygen enriched air into a reservoir. Energy is provided by multi-step reactions between oxygen and the fuel at particular temperatures underground. This method upgrades the oil in situ while the heaviest fraction of the oil is burned during the process. The application of /SC in fractured reservoirs is challenging since the injected air would flow through the fracture and a small portion of oil in the/near fracture would react with the injected air. Only a few researchers have studied /SC in fractured or high permeability contrast systems experimentally. For in situ combustion to be applied in fractured systems in an efficient way, the underlying mechanism needs to be understood. In this study, the major focus is permeability variation that is the most prominent feature of fractured systems. The effect of orientation and width of the region with higher permeability on the sustainability of front propagation are studied. The contrast in permeability was experimentally simulated with sand of different particle size. These higher permeability regions are analogous to fractures within a naturally fractured rock. Several /SC tests with sand-pack were carried out to obtain a better understanding of the effect of horizontal vertical, and combined (both vertical and horizontal) orientation of the high permeability region with respect to airflow to investigate the conditions that are required for a self-sustained front propagation and to understand the fundamental behavior. Within the experimental conditions of the study, the test results showed that combustion front propagated faster in the higher permeability region. In addition, horizontal orientation almost had no effect on the sustainability of the front; however, it affected oxygen consumption, temperature, and velocity of the front. On the contrary, the vertical orientation of the higher permeability region had a profound effect on the sustainability of the combustion front. The combustion behavior was poorer for the tests with vertical orientation, yet the produced oil AP/ gravity was higher. Based on the experimental results a mechanism has been proposed to explain the behavior of combustion front in systems with high permeability contrast.


1984 ◽  
Vol 24 (06) ◽  
pp. 657-666 ◽  
Author(s):  
C.Y. Lin ◽  
W.H. Chen ◽  
S.T. Lee ◽  
W.E. Culham

Abstract This paper presents the results of numerical simulation of dry, forward combustion tube experiments. The kinetic aspects of in-situ combustion processes also are discussed. The goals of the study are to investigate processes also are discussed. The goals of the study are to investigate the fuel deposition mechanism and to identify the key parameters affecting the performance of in-situ combustion processes. The thermal simulator developed at Gulf R and D Co. was used in the study. It was modified to include the capillary outlet effects for a more realistic description of the oil and water productions. The following experimental data were matched: cumulative water and oil productions, position of the combustion front as a function of time, fuel consumption, position of the combustion front as a function of time, fuel consumption, temperature as a function of time and position, and the pressure drop across the tube. History matches were performed for two crude oils with distinctly different physical properties (gravities of 26.5 and 13 API [0. 896 and 0. 979 g/cm3]). The agreements between experimental data and simulation results were excellent. Results indicate that the component equilibrium K-values and the kinetics of cracking reactions are the most important parameters affecting the fuel deposition, and that the fuel deposition mechanism, the fuel composition, and the locations and sizes of the transient zones depend on the crude oil and reservoir rock properties. Simulation results are always sensitive to the K-values of the light oil component but insensitive to the K-values of the heavy oil component. Results are sensitive to the kinetics of cracking reaction only if the cracking reaction is catalytic or the peak temperature and the fuel consumption are sufficiently high. Furthermore, the fuel available may or may not be solely in the form of coke. Our study suggests that further investigations of the catalytic effect of reservoir rocks and reaction kinetics of the cracking reaction are needed. Also, more than two crude oil components may be required to simulate the evaporation effect of crude oil accurately. Introduction In in-situ combustion processes, many physical changes as well as chemical reactions take place simultaneously or sequentially in the vicinity of the combustion front. It is generally believed that the combustion zone is preceded by a cracking or superheated steam zone, where coke is formed and preceded by a cracking or superheated steam zone, where coke is formed and deposited on the sand grains, and some lighter crude oil components evaporate and move forward with the flowing gas phase. The kinetics of combustion and cracking reactions in the combustion zone and the cracking zone has been discussed widely in the literature. The mechanisms of the physical changes and chemical reactions occurring around the combustion zone can be studied effectively through numerical simulation by using a thermal simulator. Although a number of numerical simulations of combustion tube experiments have been performed with different thermal simulators, no conclusions regarding the mechanism of fuel deposition can be drawn from these studies. The mentioned simulations either neglect the formation of coke from cracking reaction or use a high cracking rate so that no residual oil will be present in the combustion zone. The mechanism of fuel deposition is controlled by two important processes: the evaporation of crude oil components and the kinetics of the processes: the evaporation of crude oil components and the kinetics of the cracking reaction. These two processes determine how much fuel eventually will be burned and how much fuel will be in the form of coke. It has been reported, that low-temperature oxidation can have a significant effect on the fuel deposition and fuel characteristics. However, this reaction is important only when oxygen is available downstream of the combustion front. If oxygen is used completely in a combustion tube experiment, low-temperature oxidation will not play an important role in the fuel deposition mechanism. For a system with a high cracking reaction rate, it is likely that all of the crude oil in the cracking zone will be either evaporated or coked so that coke is the sole source of fuel. However, if the cracking rate is so low that only a portion of crude oil in the cracking zone is evaporated or coked, then some residual crude oil also will be burned in the combustion zone. This is supported strongly by the experimental data of Hildebrand who conducted a number of combustion tube experiments using clean, crushed Berea sandpacks with a variety of crude oils. SPEJ p. 657


1982 ◽  
Vol 22 (04) ◽  
pp. 493-502 ◽  
Author(s):  
Shapour Vossoughi ◽  
G. Paul Willhite ◽  
William P. Kritikos ◽  
Ibrahim M. Guvenir ◽  
Youssef El Shoubary

Abstract A fully automated in-situ combustion apparatus supported by a minicomputer was designed, constructed, and tested.Results obtained from four adiabatic dry combustion runs to investigate the effect on clay on crude oil combustion are reported. Sand mixtures of varying clay (kaolinite) content were saturated with crude oil and water. The fourth run was performed with amorphous silica powder in the sand mixture for comparison with clay results.We concluded that the large surface area of the clays was a major contributor to the fuel deposition process. However, different oxygen utilization efficiencies obtained from both types of sand mixtures indicated that mechanisms controlling the combustion reaction also depended on the composition of the porous matrix.A thermogravimetric analyzer (TGA) and a differential scanning calorimeter (DSC) were used to obtain kinetic data on the effects of kaolinite type clay on crude oil combustion. The addition of kaolinite clay or silica powder changed the shape of the crude oil TGA/DSC thermograms significantly, but sand had no effect. The major effect on DSC thermograms was a shifting of the large amount of heat produced from a higher to lower temperature range. Reduction of activation energy caused by the addition of kaolinite clay to the crude oil indicates both catalytic and surface area effects on combustion/cracking reactions. Introduction In-situ combustion is a thermal recovery process in which a portion of the crude oil is coked and burned in situ to recover the remaining oil. Design of the process involves experimental evaluation of process variables in laboratory experiments. Variables sought experimentally for the design of the process are usually fuel availability, air requirement, oxygen utilization efficiency, combustion peak temperature, combustion front velocity, effect of porous matrix, and kinetic parameters. Four methods have been used to obtain design data for in-situ combustion projects. These include (1) adiabatic in-situ combustion tube runs, (2) isothermal reactors, (3) flood pot tests, and (4) thermal analysis techniques.This paper describes an investigation of the effect of clay on in-situ combustion involving results from adiabatic combustion tube runs and thermal analysis methods. Part 1 describes the minicomputer-based insitu combustion system developed as part of the research program. Part 2 demonstrates application of the system to study the effect of clays on the in-situ combustion process. Combustion tube runs described in Part 2 are supplemented with thermal analysis methods to evaluate the effect of clay on in-situ combustion of a Kansas crude oil. Part 1-Development of an Automated In-Situ Combustion Tube Adiabatic tube runs have been the most commonly used approach for studying in-situ combustion. Since heat loss is small to nil in thick reservoirs, in-situ combustion is assumed to occur under adiabatic conditions. Adiabatic conditions in tube runs can be achieved either by insulating the tube or by reducing the temperature gradient between the sandpack and the environment surrounding the tube, or both. To attain adiabatic conditions in a partially or noninsulated tube, the temperature of the surroundings must be raised to that of the sandpack as the combustion front moves along the tube. Heater bands with proportional heat loads controlled by individual controllers are used. This requires a large number of controllers to control the temperature of the outside SPEJ P. 493^


SPE Journal ◽  
2011 ◽  
Vol 16 (02) ◽  
pp. 358-373 ◽  
Author(s):  
H.. Fadaei ◽  
L.. Castanier ◽  
A.M.. M. Kamp ◽  
G.. Debenest ◽  
M.. Quintard ◽  
...  

Summary Approximately one-third of global heavy-oil resources can be found in fractured reservoirs. In spite of its strategic importance, recovery of heavy crudes from fractured reservoirs has found few applications because of the complexity of such reservoirs. In-situ combustion (ISC) is a candidate process for such reservoirs, especially for those where steam injection is not feasible. Experimental studies reported in the literature on this topic mentioned a cone-shaped combustion front, indicating that the process was governed by diffusion of oxygen into the matrix. The main oil-production mechanisms were found to be thermal expansion of oil and evaporation of light components (Schulte and de Vries 1985; Greaves et al. 1991). In order to confirm these results, we carried out reservoir-simulation studies presented in Fadaei et al. (2010). We have shown that the front has the shape of a cone, and we have performed a combustion/extinction analysis representing the results in a diagram of cumulative production vs. diffusion coefficient and matrix permeability. Before obtaining quantitative and qualitative comparisons, we need to characterize the systems we want to study. Therefore, we also carried out laboratory experiments using kinetic cells and combustion tubes. The kinetic-cell studies showed that the presence of carbonates has a significant effect on combustion kinetics. Our combustion-tube studies confirmed the previously observed coneshaped front. Previous studies reported in literature used heating elements along the combustion tube to regulate the temperature, which may have caused some undue heating of the core. To avoid that, we chose to use efficient insulation to minimize heat losses. Combustion advanced faster in nonconsolidated matrix, in which the permeability was higher than in consolidated matrix. The results showed that the presence of severe heterogeneities may prevent the combustion front from propagating. Several runs were performed for different air-injection rates and pressures and for different permeability contrasts between the matrix and the fracture. The next step of our work is the upscaling of ISC in the fractured reservoir at interwell scale on the basis of knowledge provided by simulation and experimental studies.


2018 ◽  
Vol 350 ◽  
pp. 776-790 ◽  
Author(s):  
Qianghui Xu ◽  
Wei Long ◽  
Hang Jiang ◽  
Cheng Zan ◽  
Jia Huang ◽  
...  

SPE Journal ◽  
2008 ◽  
Vol 13 (02) ◽  
pp. 153-163 ◽  
Author(s):  
Jean Cristofari ◽  
Louis M. Castanier ◽  
Anthony R. Kovscek

Summary Application of cyclic solvent injection into heavy and viscous crude oil followed by in-situ combustion of heavy residues is explored from a laboratory perspective. The solvent reduces oil viscosity in-situ and extracts the lighter crude-oil fractions. Combustion cleans the near-well region and stimulates thermally the oil production. Both solvent injection and in-situ combustion are technically effective. The combination of the two methods, however, has never been tried to our knowledge. Hamaca (Venezuela) and West Sak (Alaska) crude oils were employed. First, ramped temperature oxidation studies were conducted to measure the kinetic properties of the oil prior to and following solvent injection. Pentane, decane, and kerosene were the solvents of interest. Second, solvent was injected in a cyclic fashion into a 1-m-long combustion tube. Then, the tube was combusted. Hamaca oil presented good burning properties, especially following pentane injection. The pentane extracted lighter components of the crude and deposited preferentially effective fuel for combustion. On the other hand, West Sak oil did not exhibit stable combustion properties without solvent injection, following solvent injection, and even when metallic additives were added to enhance the combustion. We were unable to propagate a burning front within the combustion tube. Nevertheless, the experimental results do show that this combined solvent combustion method is applicable to the broad range of oil reservoirs with properties similar to Hamaca. Introduction This article investigates the effect of solvent injection on the subsequent performance of in-situ combustion. The work is based on experimental results obtained by a combination of these two successful in-situ upgrading processes for viscous oils. It is envisioned that application in the field occurs first by a cycle of solvent injection, a short soak period, and subsequent oil production using the same well (Castanier and Kovscek 2005). By mixing with oil, the solvent decreases the oil viscosity and upgrades the crude by extracting in-situ the lighter ends of the crude oil. The heavy ends, that are markedly less interesting, are left behind. Injection of solvent and oil production occurs for a number of cycles until the economic limit is reached or until the deposition of crude oil heavy ends damages production. The solvent injection phase is followed by in-situ combustion that burns the heavy ends left from the solvent injection. By switching from air to nitrogen injection, the combustion is extinguished. Again, oil is produced by the same well used for injection in a cyclic fashion. Combustion enhances the production by decreasing thermally the oil viscosity and adding energy to the reservoir through the formation of combustion gases. The combustion also upgrades the oil through thermal cracking (Castanier and Brigham 2003). For our experiments, two oils of particular interest were used. The first experiments employed crude oil from Hamaca (Venezuela), where the field location requires important costs of transporting crude to upgrading facilities. The second set of experiments was conducted with viscous West Sak oil (Alaska), where steam injection currently appears to be unsuitable because of heat losses to permafrost. While the presence of oil in the Orinoco heavy-oil belt, in Central Venezuela, was discovered in the 1930s, the first rigorous evaluation of the resources was made in the 1980s, and the region was divided into four areas: Machete, Zuata, Hamaca, and Cerro Negro. It contains between 1.2 and 1.8 trillion recoverable barrels (Kuhlman 2000) of heavy and extra-heavy oil. The 9-11° API density crude is processed at the Jose refinery complex on the northern coast of Venezuela. The cost of transporting heavy oils to the northern coast provides an incentive to investigate in-situ upgrading. In 2003, the total production from these projects was about 500,000 B/D of synthetic crude oil. This figure was expected to increase to 600,000 B/D by 2005 (Acharya et al. 2004). West Sak is a viscous oil reservoir located within the Kuparuk River Unit on the North Slope of Alaska. It is part of a larger viscous oil belt that includes Prudhoe Bay. The estimated total oil in place ranges from 7 to 9 billion barrels, with an oil gravity ranging from 10 to 22°API. The reservoir depth ranges from 2,500 to 4,500 feet, with gross thickness of 500 feet and an average net thickness of 90 feet. The temperature is between 45 and 100°F, and there is a 2,000-ft (600-m) -thick Permafrost layer. In March 2005, 16,000 BOPD were produced and 40,000 BOPD are planned for 2007 (Targac et al. 2005). Within the scope of this study, West Sak is of particular interest because there are technical difficulties with steam injection that include (Gondouin and Fox 1991):Surface-generated steam passing through a thick permafrost layer; the well would sink if the permafrost melted.The reservoirs consist of thin, medium-permeability layers.The formation may contain swelling clays that reduce the rock permeability when exposed to steam condensate. Solvent injection and in-situ combustion are effective in a variety of fields. Both techniques upgrade the oil directly in the reservoir, thereby making heavy resources easier to exploit. The combination of these two processes is applicable at large scale to recover viscous oil, or in-situ combustion could be applied on an ad hoc basis to clean the wellbore region, increase the permeability, and thus act as a stimulation process.


Sign in / Sign up

Export Citation Format

Share Document