Evaluating the Variability in the Phenolic Concentration of Extra Virgin Olive Oil According to the Commission Regulation (EU) 432/2012 Health Claim

2020 ◽  
Vol 68 (34) ◽  
pp. 9070-9080
Author(s):  
Inmaculada Criado-Navarro ◽  
María Asunción López-Bascón ◽  
Feliciano Priego-Capote
2018 ◽  
Vol 25 (1) ◽  
pp. 47-55 ◽  
Author(s):  
María Abenoza ◽  
Javier Raso ◽  
Rosa Oria ◽  
Ana C Sánchez-Gimeno

Bitterness is a positive sensorial attribute of olive oil that mainly depends on phenol concentration. However, excessive bitterness may be unpleasant for consumers. The aim of this investigation was to evaluate if partitioning polyphenols between oil and water phases could modulate the bitterness of an Empeltre olive oil containing a phenolic concentration higher than the typical content for this olive oil variety. The linear relationship observed between the percentage of oil in the extraction system and the percentage of phenols removed from the oil permitted estimating the olive oil-to-water ratio required to reduce the concentration of phenols for a given value in order to modulate Empeltre olive oil bitterness. Olive oils after liquid–liquid extraction did not develop any negative sensory attributes, and their physicochemical parameters were not substantially affected. Liquid–liquid extraction using water as a solvent is a procedure capable of effectively reducing the total phenol compounds of Empeltre extra virgin olive oil and, as a consequence, of reducing its bitterness intensity without affecting the highest commercial category determined by the parameters legally established by European Community regulations just after extraction and during nine months of storage.


2020 ◽  
Vol 4 (1) ◽  
pp. 11 ◽  
Author(s):  
Biagi Angelo Zullo ◽  
Silverio Pachioli ◽  
Gino Ciafardini

Bitter taste is a positive sensory attribute that correlates with the concentration of phenols in olive oil. However, excessive bitterness can be perceived by consumers as a negative attribute. The aim of this investigation was to improve the process of debittering Don Carlo extra virgin olive oil (EVOO), which is rich in phenols, through blending with newly produced Leccino EVOOs, which can provide high oleuropeinolytic activity. The debittering process of blending Don Carlo EVOO with two types of Leccino EVOOs (decanter and settled EVOO), was carried out during three months of storage in canisters placed in fixed positions, or periodically inverted to prevent sedimentation. The reduction in phenolic concentration and bitterness index (K225 value) reached maximum values of 51% and 42% respectively in Don Carlo EVOO mixed with Leccino settled EVOO after three months of storage in periodically inverted containers. Analytical indices and sensory analysis, in accord with bitterness index (K225) results, confirmed a reduction or elimination of bitter taste in the oil samples depending on the type of Leccino EVOO added, and the sample storage method. All analytical results remained within parameters established by the European Community regulations for commercial merceological class EVOO.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 368
Author(s):  
Paula Garcia-Oliveira ◽  
Cecilia Jimenez-Lopez ◽  
Catarina Lourenço-Lopes ◽  
Franklin Chamorro ◽  
Antia Gonzalez Pereira ◽  
...  

Extra virgin olive oil (EVOO) is one of the most distinctive ingredients of the Mediterranean diet. There are many properties related to this golden ingredient, from supreme organoleptic characteristics to benefits for human health. EVOO contains in its composition molecules capable of exerting bioactivities such as cardio protection, antioxidant, anti-inflammatory, antidiabetic, and anticancer activity, among others, mainly caused by unsaturated fatty acids and certain minor compounds such as tocopherols or phenolic compounds. EVOO is considered the highest quality vegetable oil, which also implies a high sensory quality. The organoleptic properties related to the flavor of this valued product are also due to the presence of a series of compounds in its composition, mainly some carbonyl compounds found in the volatile fraction, although some minor compounds such as phenolic compounds also contribute. However, these properties are greatly affected by the incidence of certain factors, both intrinsic, such as the olive variety, and extrinsic, such as the growing conditions, so that each EVOO has a particular flavor. Furthermore, these flavors are susceptible to change under the influence of other factors throughout the oil's shelf-life, such as oxidation or temperature. This work offers a description of some of the most remarkable compounds responsible for EVOO’s unique flavor and aroma, the factors affecting them, the mechanism that lead to the degradation of EVOO, and how flavors can be altered during the shelf-life of the oil, as well as several strategies suggested for the preservation of this flavor, on which the quality of the product also depends.


2021 ◽  
Vol 141 ◽  
pp. 322-329
Author(s):  
Jihed Faghim ◽  
Mbarka Ben Mohamed ◽  
Mohamed Bagues ◽  
Kamel Nagaz ◽  
Tebra Triki ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
pp. 606-618 ◽  
Author(s):  
Dani Dordevic ◽  
Ivan Kushkevych ◽  
Simona Jancikova ◽  
Sanja Cavar Zeljkovic ◽  
Michal Zdarsky ◽  
...  

AbstractThe aim of this study was to simulate olive oil use and to monitor changes in the profile of fatty acids in home-made preparations using olive oil, which involve repeated heat treatment cycles. The material used in the experiment consisted of extra virgin and refined olive oil samples. Fatty acid profiles of olive oil samples were monitored after each heating cycle (10 min). The outcomes showed that cycles of heat treatment cause significant (p < 0.05) differences in the fatty acid profile of olive oil. A similar trend of differences (p < 0.05) was found between fatty acid profiles in extra virgin and refined olive oils. As expected, the main differences occurred in monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs). Cross-correlation analysis also showed differences between the fatty acid profiles. The most prolific changes were observed between the control samples and the heated (at 180°C) samples of refined olive oil in PUFAs, though a heating temperature of 220°C resulted in similar decrease in MUFAs and PUFAs, in both extra virgin and refined olive oil samples. The study showed differences in fatty acid profiles that can occur during the culinary heating of olive oil. Furthermore, the study indicated that culinary heating of extra virgin olive oil produced results similar to those of the refined olive oil heating at a lower temperature below 180°C.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1677
Author(s):  
Biagi Angelo Zullo ◽  
Giulia Venditti ◽  
Gino Ciafardini

Filtration is a widely used process in the production of extra virgin olive oil. We studied the influence of filtration performed with cotton filters and cellulose filter press on the biotic components of the oily mass containing probiotic traits in two freshly produced monocultivar extra virgin olive oils. The concentration of bacteria was reduced from 100% to 28%, while that of fungi was reduced from 100% to 44% after filtration, according to the filtration system and the initial contamination of the original monocultivar extra virgin olive oil. Compared with the control, the yeast content in the oil samples filtered with cotton filters was reduced from 37% to 11% depending on the cultivar. In the oil filtered with cellulose filter press, the yeast content reduced from 42% to 16%. The viable yeast that passed through the oily mass during the filtration process with cellulose filter press, unlike all the other samples, were unable to survive in the oil after a month of storage. The possible health benefits of compounds from both the biotic and abiotic fraction of the oil, compared to the control, were significantly low when filtered with the cellulose filter press.


Author(s):  
Antonella Maria Aresta ◽  
Nicolella De Vietro ◽  
Maria Lisa Clodoveo ◽  
Riccardo Amirante ◽  
Filomena Corbo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document