initial contamination
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 13)

H-INDEX

12
(FIVE YEARS 1)

Food Research ◽  
2021 ◽  
Vol 5 (5) ◽  
pp. 250-258
Author(s):  
R.P.I. Nalle ◽  
L. Nuraida ◽  
W. Mahakarnchanakul ◽  
R. Dewanti-Hariyadi

One of the food products commonly contaminated by Salmonella is raw chicken. In wet markets in Southeast Asian countries, chicken carcasses frequently were handled and sold at abused temperatures, above the refrigeration temperatures (>5°C), thus could support the growth of Salmonella. One way to extend the shelf life of raw chicken carcasses at room temperature is by reducing the initial contamination using sanitisers such as ozone micro-bubble water (OMBW) or hypochlorite (NaOCl) solution. The other option is by adding bio-preservative agents such as lactic acid bacteria. This study aimed to evaluate the effect of sanitisers in reducing the initial contamination and the potential of lactic acid bacteria in inhibiting the growth of Salmonella in raw chicken fillets stored at abused temperatures. Chicken fillets were artificially inoculated with Salmonella (~5 log CFU/g) and rinsed for 5 minutes with sterile water, OMBW (1 and 2 ppm), or NaOCl solution (50 and 100 ppm). The results showed that washing the chicken fillets with NaOCl 100 ppm gave the most reduction of Salmonella counts. However, there were no significant effects regarding the inhibition of Salmonella growth during temperature abuse between those previously washed with OMBW or sterile water. The addition of L. rhamnosus R23 (6 log CFU/g and 8 log CFU/g) did not significantly inhibit the growth of Salmonella as compared to the control.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1677
Author(s):  
Biagi Angelo Zullo ◽  
Giulia Venditti ◽  
Gino Ciafardini

Filtration is a widely used process in the production of extra virgin olive oil. We studied the influence of filtration performed with cotton filters and cellulose filter press on the biotic components of the oily mass containing probiotic traits in two freshly produced monocultivar extra virgin olive oils. The concentration of bacteria was reduced from 100% to 28%, while that of fungi was reduced from 100% to 44% after filtration, according to the filtration system and the initial contamination of the original monocultivar extra virgin olive oil. Compared with the control, the yeast content in the oil samples filtered with cotton filters was reduced from 37% to 11% depending on the cultivar. In the oil filtered with cellulose filter press, the yeast content reduced from 42% to 16%. The viable yeast that passed through the oily mass during the filtration process with cellulose filter press, unlike all the other samples, were unable to survive in the oil after a month of storage. The possible health benefits of compounds from both the biotic and abiotic fraction of the oil, compared to the control, were significantly low when filtered with the cellulose filter press.


Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 486
Author(s):  
Pierre Schambri ◽  
Sophie Brunet ◽  
Jean-Denis Bailly ◽  
Didier Kleiber ◽  
Cecile Levasseur-Garcia

Mycotoxins are secondary metabolites that are produced by molds during their development. According to fungal physiological particularities, mycotoxins can contaminate crops before harvest or during storage. Among toxins that represent a real public health issue, those produced by Fusarium genus in cereals before harvest are of great importance since they are the most frequent in European productions. Among them, deoxynivalenol (DON) and fumonisins (FUM) frequently contaminate maize. In recent years, numerous studies have investigated whether food processing techniques can be exploited to reduce the levels of these two mycotoxins, which would allow the identification and quantification of parameters affecting mycotoxin stability. The particularity of the popcorn process is that it associates heat treatment with a particular physical phenomenon (i.e., expansion). Three methods exist to implement the popcorn transformation process: hot air, hot oil, and microwaves, all of which are tested in this study. The results show that all popping modes significantly reduce FUM contents in both Mushroom and Butterfly types of popcorn. The mean initial contamination of 1351 µg/kg was reduced by 91% on average after popping. For DON, the reduction was less important despite a lower initial contamination than for FUM (560 µg/kg). Only the hot oil popping for the Mushroom type significantly reduced the contamination up to 78% compared to unpopped controls. Hot oil popping appears to provide the most important reduction for the two considered mycotoxins for both types of popcorn (−98% and −58% average reduction for FUM and DON, respectively).


2021 ◽  
Vol 16 (3) ◽  
pp. 321-325
Author(s):  
Nikolay Petrovich Tishaninov ◽  
Alexander Vitalyevich Anashkin ◽  
Haider Jameel Alshinayyin ◽  
Konstantin Nikolayevich Tishaninov

Results of the study on the separation of crushed barley grains from the grain mixture along the length of the cell surface of indented cylinder, depending on the initial impurity concentration (Zi), the speed mode of the indented cylinder (n) and the lifting angle of the upper edge of the front wall of the output tray (γn) relative to the horizon, are presented. The theoretical steadily decreasing trend in the intensity of the impurity component separation has been experimentally confirmed. The fact that crushed barley grains are a difficult-to-separate impurity has been established. When n increases, the intensity of impurity separation increases dramatically. The γn angle increases the dependence of the process dynamics on the speed mode. At γn =55°, the increase of n from 40 to 50 rpm increases the intensity of impurity separation from the grain mixture by 6.44 times. A decrease in the value of γn and an increase in the speed mode of operation lead to an increase in process losses. An increase in the initial contamination of the grain mixture under other equal operating conditions of the indented cylinder leads to a proportional increase in its residual contamination.


2021 ◽  
Vol 5 ◽  
Author(s):  
Bert Dijkink ◽  
Erik Esveld ◽  
Jan Broeze ◽  
Martijntje Vollebregt

The milk for a factory in Sululta (Ethiopia) is currently collected at ambient temperature. To increase milk production, the sourcing must be extended. This requires the collection of not only the morning milk but also the evening milk from smallholder farms. To accomplish this, the collection of milk from small farmers has to be improved, whereby the milk quality has to be assured with reasonable cost and environmental impact. A model predicting milk rejection was developed based on initial contamination and time and temperature profiles. With this model, different cooling scenarios we reevaluated regarding the expected effectiveness of reducing the rejection rate during collection. Second, cost estimations were made to implement the scenarios to collect morning and evening milk from smallholder farms. A third criterion was greenhouse gas (GHG) emissions per litre of collected milk. Finally, the feasibility of the scenarios was assessed in terms of technical, practical, and economic aspects. Including both quality and economics, the best scenario can be expected from a cooling centre where farmers bring their milk twice a day, except there are signals that the farmers would not be willing to deliver the evening milk to the centre at night. In that case, an additional collecting system would be needed to increase the milk supply. This would result in higher collection costs and an increased risk of milk rejection at the factory gate. Furthermore, this would reduce the value of the chilling centre, as in that case it would be better to deliver the milk directly to the factory. Both scenarios would increase GHG emissions compared with the current situation. Only the use of an off-grid solar power-driven cooling system at the farms would reduce the GHG emissions. However, this solution is less feasible economically. The applied combination of a simple model, economic analysis and the effect on GHG emissions gives valuable information on the effectiveness and limitations of different cooling scenarios for the milk factory. It can help to successfully apply a scenario for increasing the milk supply.


2021 ◽  
Author(s):  
J. De Smet ◽  
D. Vandeweyer ◽  
L. Van Moll ◽  
D. Lachi ◽  
L. Van Campenhout

AbstractThe black soldier fly is currently the most produced edible insect on industrial scale, with its larval stage being processed into animal feed as the main application. As this insect species enters the feed and food chain, good hygiene and monitoring practices are needed to avoid the entrance of foodborne pathogens via the larvae. However, insufficient data on the risk of such introductions via industrial larvae production are available. To address this gap, a range of rearing trials were conducted in which the substrate, chicken feed, was inoculated with different levels of Salmonella and in which total viable counts and Salmonella counts were determined during the following days. The outgrowth of Salmonella was slower in those experiments with a lower initial contamination level than in experiments with a higher level. No significant reducing effect originating from the larvae on the substrate Salmonella counts was observed, in contrast to previous studies using other substrates. Our study also revealed that airborne transmission of Salmonella is possible under rearing conditions corresponding to those applied at industrial production sites. Based on our results, we recommend insect producers to use substrate ingredients free of Salmonella, and not to count on the antimicrobial activities that BSFL may exert in some situations towards food pathogens. More inoculation studies using other Salmonella serotypes, other zoonotic bacteria, other substrates, larvae of other ages and including variations on rearing protocols are needed in order to obtain a general view on the dynamics of food pathogens in this insect species and to support comprehensive risk assessments.


2021 ◽  
Vol 23 (1) ◽  
pp. 59
Author(s):  
D. A. Filatov ◽  
M. A. Kopytov ◽  
V. S. Ovsyannikova ◽  
E. A. Elchaninova

The possibility of biochemical oxidation of polyaromatic hydrocarbon mixtures (PAHs) by the mixed culture of hydrocarbon-oxidizing microorganisms (HOM) in a liquid medium and soil was investigated. The mixed HOM culture was represented by Pseudomonas stutzeri, Pseudomonas putida, Bacillus cereus, and Arthrobacter globiformis genera. It was shown that during HOM cultivation of the microorganisms under study in the liquid medium their number increases from 0.25·104 to 11·108 CFU/ml, which is accompanied by an increase in their oxygenase activity. All PAHs identified were subjected to oxidation from 11.3 to 100%. The results of experiments on biodegradation of PAHs under natural conditions have shown that for 60 days the total utilization of oil products in soils was on the average 65% of the initial contamination. This suggests the prospects for the use of the mixed HOM culture under study for effective biodegradation of PAHs polluting soil and waste waters.


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1644
Author(s):  
Jean-Christophe Augustin ◽  
Pauline Kooh ◽  
Thomas Bayeux ◽  
Laurent Guillier ◽  
Thierry Meyer ◽  
...  

The foodborne disease burden (FBDB) related to 26 major biological hazards in France was attributed to foods and poor food-handling practices at the final food preparation step, in order to develop effective intervention strategies, especially food safety campaigns. Campylobacter spp. and non-typhoidal Salmonella accounted for more than 60% of the FBDB. Approximately 30% of the FBDB were attributed to 11 other hazards including bacteria, viruses and parasites. Meats were estimated as the main contributing food category causing (50–69%) (CI90) of the FBDB with (33–44%), (9–21%), (4–20%) (CI90) of the FBDB for poultry, pork and beef, respectively. Dairy products, eggs, raw produce and complex foods caused each approximately (5–20%) (CI90) of the FBDB. When foods are contaminated before the final preparation step, we estimated that inadequate cooking, cross-contamination and inadequate storage contribute for (19–49%), (7–34%) and (9–23%) (CI90) of the FBDB, respectively; (15–33%) (CI90) of the FBDB were attributed to the initial contamination of ready-to-eat foods—without any contribution from final food handlers. The thorough implementation of good hygienic practices (GHPs) at the final food preparation step could potentially reduce the FBDB by (67–85%) (CI90) (mainly with the prevention of cross-contamination and adequate cooking and storage).


2020 ◽  
Vol 26 (8) ◽  
pp. 2038-2041
Author(s):  
Ophélie Petit ◽  
Guillaume Saint-Lorant ◽  
Michèle Vasseur ◽  
Julie Boucher ◽  
Justin Courtin ◽  
...  

An important amount of cytotoxic drug may accumulate in the workplace following the breakage of a vial containing an anticancer drug. Thanks to the monthly monitoring of the surface contamination in our compounding unit, a strong increase of cyclophosphamide contamination was highlighted in the storage area following the breakage of the vial, despite application of the emergency procedure. This study presents an analysis of chemical decontamination in the context of massive contamination. Samples were taken on the floor and on the caster of a storage shelf where the vial broke. The residual contamination was measured with a liquid chromatography–mass spectrometry/mass spectrometry method. An admixture of 10−2 M sodium dodecyl sulfate and 70% isopropanol (SDS/IPA 8:2) was selected as the decontamination solution. High amounts of cyclophosphamide were retrieved. The initial contamination on the floor was over 20 ng/cm2. Three decontaminations with SDS/IPA were carried out at Day 61, Day 68, and Day 71. The amount of cyclophosphamide decreased to 0.45 ng/cm2 at D134. However, high values were still measured on the caster despite successive decontaminations, with a maximal value of 19.78 ng/cm2 observed at Day 106. Continuous monitoring in our unit led us to highlight the inefficiency of our emergency procedure to eliminate high cyclophosphamide contamination. The procedure involving the SDS/IPA admixture was more efficient on the floor compared to the caster, which is a different surface type and porosity. This work highlights the importance of improving the procedures of incident management using contamination monitoring and repeated decontamination procedures adapted to different contaminants and surfaces.


Sign in / Sign up

Export Citation Format

Share Document