Risks Related to High-Dosage Recombinant Antimicrobial Peptide Microcin J25 in Mice Model: Intestinal Microbiota, Intestinal Barrier Function, and Immune Regulation

2018 ◽  
Vol 66 (43) ◽  
pp. 11301-11310 ◽  
Author(s):  
Haitao Yu ◽  
Lijun Shang ◽  
Xiangfang Zeng ◽  
Ning Li ◽  
Hongbin Liu ◽  
...  
Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 345 ◽  
Author(s):  
Gang Wang ◽  
Qinglong Song ◽  
Shuo Huang ◽  
Yuming Wang ◽  
Shuang Cai ◽  
...  

The purpose of this study was to investigate the effects of antimicrobial peptide microcin J25 (MccJ25) on growth performance, immune regulation, and intestinal microbiota in broilers. A total of 3120 one-day-old male Arbor Acres (AA) broilers were randomly allocated to five groups (12 replicates, 52 chickens per replicate). The treatments were control, challenge (0 mg/kg MccJ25), different dosages of antimicrobial peptide (AMP) (0.5 and 1mg/kg MccJ25), and antibiotic groups (20 mg/kg colistin sulfate). The MccJ25 groups increased the body weight gain (starter and overall) that was reduced in the challenge group. The overall (day 1 to day 42) feed-to-gain ratio (G:F) was significantly decreased in AMP groups compared with the challenge group. Birds fed AMP had a decreased population of total anaerobic bacteria (day 21 and day 42) and E. coli (day 21 and day 42) in feces, as well as a lower Salmonella infection rate (day 21 and day 42) compared with birds in the challenge group. The villus height of the duodenum, jejunum, and ileum, as well as the villus height/crypt depth of the duodenum and jejunum were greater in AMP groups than birds in the challenge group. Moreover, MccJ25 linearly improved the villus height of the duodenum and jejunum. The addition of MccJ25 decreased the concentration of TNF-α, IL-1β, and IL-6 compared with challenge group. At d 21, MccJ25 linearly reduced the level of IL-6. In conclusion, dietary supplemented MccJ25 effectively improved performance, systematic inflammation, and improved fecal microbiota composition of the broilers.


Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 449 ◽  
Author(s):  
Shinpei Kawakami ◽  
Ryouichi Ito ◽  
Hiroko Maruki-Uchida ◽  
Asuka Kamei ◽  
Akihito Yasuoka ◽  
...  

Amazake is a traditional Japanese beverage. Its main ingredients are sake cake and rice malt. In this study, we examined the effect of sake cake and rice malt on the intestinal barrier function and gut microbiota. BALB/c mice were fed a control diet or a diet containing a mixture of sake cake and rice malt powder (SRP) for four weeks. Fecal IgA values did not change between groups, but the fecal mucin level was significantly greater in the SRP-fed group. Gene expression analysis in the ileum by real-time PCR demonstrated Muc2 expression did not change, while the Muc3 expression was upregulated in the SRP-fed group. Furthermore, microbiota analysis demonstrated a change by SRP intake at the family level, and the proportion of Lactobacillaceae significantly increased in the SRP-fed group. At the genus level, the proportion of Lactobacillus also significantly increased in the SRP-fed group. These results suggest that the intake of a mixture of sake cake and rice malt improves intestinal barrier function by increasing mucin levels and inducing changes in intestinal microbiota.


2020 ◽  
Author(s):  
You-Dong Wan ◽  
Rui-Xue Zhu ◽  
Xin-Ting Pan

ABSTRACTDisorders of bile acids (BAs) are closely related to the development of liver and intestinal diseases, including acute pancreatitis (AP). However, the mechanism underlying the involvement of BAs in AP development remains unclear. We used intraperitoneal injection of cerulein to construct AP mouse models. These mice had significantly reduced tauroursodeoxycholic acid (TUDCA) and an imbalance of intestinal microbiota, based on 16S rDNA gene sequencing. To explore the role of AP-induced intestinal microbiota changes in the development of AP, we transplanted stool obtained from AP mice to antibiotic-treated, microbiota-depleted healthy mice. Microbiota-depleted mice presented injury to the intestinal barrier function and pancreas. Additionally, microbiota depletion reduced AP-associated pancreatic injury. This indicated that the gut microbiota may worsen AP. As TUDCA was deficient in AP mice, we gavaged AP mice with it, and evaluated subsequent expression changes in the bile acid signaling receptors farnesoid-x-receptor (FXR) and its target gene fibroblast growth factor (FGF) 15. These were downregulated, and pancreatic and intestinal barrier function injury were mitigated. Similar results were found in microbiota-depleted AP without BA treatment. However, we did not observe further downregulation of the FXR signaling pathway in microbiota-depleted AP mice given TUDCA, indicating that improvement of pancreatitis by TUDCA may be associated with gut microbiota. Our analysis of changes to the gut microbiota in AP indicated that Lactobacilli may be the key contributors. Taken together, our study shows that supplementation with BAs could improve bile acid-FXR-FGF15 signaling, and reduce pancreatic and intestinal injury, and that this effect may be associated with the gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document