Measurement and Correlation of l-Phenylalanine Benzyl Ester Hydrochloride Solubility in 11 Individual Solvents and a Methanol + Acetone Binary Solvent System from 283.15 to 323.15 K

Author(s):  
Haishuang Huang ◽  
Zilong Ma ◽  
Jingxuan Qiu ◽  
Hui He ◽  
Ying Guo ◽  
...  
Nano Research ◽  
2021 ◽  
Author(s):  
Ming Chen ◽  
Liming Xie ◽  
Changting Wei ◽  
Yuan-Qiu-Qiang Yi ◽  
Xiaolian Chen ◽  
...  

Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 171 ◽  
Author(s):  
Faiyaz Shakeel ◽  
Sultan Alshehri ◽  
Mohd Imran ◽  
Nazrul Haq ◽  
Abdullah Alanazi ◽  
...  

The current research work was performed to evaluate the solubilization behavior, solution thermodynamics, and solvation behavior of poorly soluble pyridazinone derivative i.e., 6-phenyl-pyridazin-3(2H)-one (PPD) in various binary solvent systems of dimethyl sulfoxide (DMSO) and water using experimental and various computational approaches. The solubility of PPD in various binary solvent system of DMSO and water was investigated within the temperature range T = 298.2 K to 318.2 K at constant air pressure p = 0.1 MPa, by employing an isothermal technique. The generated solubility data of PPD was computationally represented by five different cosolvency models including van’t Hoff, Apelblat, Yalkowsky–Roseman, Jouyban–Acree, and Jouyban–Acree–van’t Hoff models. The performance of each computational model for correlation studies was illustrated using root mean square deviations (RMSD). The overall RMSD value was obtained <2.0% for each computational model. The maximum solubility of PPD in mole fraction was recorded in neat DMSO (4.67 × 10−1 at T = 318.2 K), whereas the lowest one was obtained in neat water (5.82 × 10−6 at T = 298.2 K). The experimental solubility of PPD in mole fraction in neat DMSO was much higher than its ideal solubility, indicating the potential of DMSO for solubility enhancement of PPD. The computed values of activity coefficients showed maximum molecular interaction in PPD-DMSO compared with PPD-water. Thermodynamic evaluation showed an endothermic and entropy-driven dissolution of PPD in all the mixtures of DMSO and water. Additionally, enthalpy–entropy compensation evaluation indicated an enthalpy-driven mechanism as a driven mechanism for the solvation property of PPD.


2012 ◽  
Vol 8 (4) ◽  
pp. 294 ◽  
Author(s):  
Tingping Lei ◽  
N.A. Zhan ◽  
Wenjia Zuo ◽  
Wei Cheng ◽  
Bulei Xu ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Afra Hadjizadeh ◽  
Houman Savoji ◽  
Abdellah Ajji

Despite many of the studies being conducted, the electrospinning of poly (lactic acid) (PLA), dissolved in its common solvents, is difficult to be continuously processed for mass production. This is due to the polymer solution droplet drying. Besides, the poor stretching capability of the polymer solution limits the production of small diameter fibers. To address these issues, we have examined the two following objectives: first, using an appropriate solvent system for the mass production of fibrous mats with fine-tunable fiber diameters; second, nontoxicity of the mats towards Neural Stem Cell (NSC). To this aim, TFA (trifluoroacetic acid) was used as a cosolvent, in a mixture with DCM (dichloromethane), and the solution viscosity, surface tension, electrical conductivity, and the continuity of the electrospinning process were compared with the solutions prepared with common single solvents. The binary solvent facilitated PLA electrospinning, resulting in a long lasting, stable electrospinning condition, due to the low surface tension and high conductivity of the binary-solvent system. The fiber diameter was tailored from nano to micro by varying effective parameters and examined by scanning electron microscopy (SEM) and image-processing software. Laminin-coated electrospun mats supported NSC expansion and spreading, as examined using AlamarBlue assay and fluorescent microscopy, respectively.


2019 ◽  
Vol 35 (2) ◽  
pp. 90-101
Author(s):  
Samira Emami ◽  
Mir Mohammad Alavi Nikje

Received polycarbonate wastes from the used optical and digital optical disk (CDs and DVDs) were chemically recycled into bisphenol A (BPA) in 100% recovery yield using diethylene glycol/water as a binary solvent system and Fe3O4@SiO2 as the heterogeneous catalyst at the convenient, green and eco-friendly conditions using conventional heating method. The recovered BPA was analyzed by spectroscopic methods and data compared by an authentic sample.


Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1181
Author(s):  
Magdalena Rychlicka ◽  
Anna Gliszczyńska

The p-methoxycinnamic acid (p-MCA) is one of the most popular phenylpropanoids, the beneficial impact of which on the human health is well documented in the literature. This compound has shown many valuable activities including anticancer, antidiabetic, and neuro- and hepatoprotective. However, its practical application is limited by its low bioavailability resulting from rapid metabolism in the human body. The latest strategy, aimed at overcoming these limitations, is based on the production of more stability in systemic circulation bioconjugates with phospholipids. Therefore, the aim of this research was to develop the biotechnological method for the synthesis of phospholipid derivatives of p-methoxycinnamic acid, which can play a role of new nutraceuticals. We developed and optimized enzymatic interesterification of phosphatidylcholine (PC) with ethyl p-methoxycinnamate (Ep-MCA). Novozym 435 and a binary solvent system of toluene/chloroform 9:1 (v/v) were found to be the effective biocatalyst and reaction medium for the synthesis of structured p-MCA phospholipids, respectively. The effects of the other reaction parameters, such as substrate molar ratio, enzyme dosage, and reaction time, on the degree of incorporation of p-MCA into PC were evaluated by use of an experimental factorial design method. The results showed that substrate molar ratio and biocatalyst load have significant effects on the synthesis of p-methoxycinnamoylated phospholipids. The optimum conditions were: Reaction time of three days, 30% (w/w) of Novozym 435, and 1/10 substrate molar ratio PC/Ep-MCA. Under these parameters, p-methoxycinnamoylated lysophosphatidylcholine (p-MCA-LPC) and p-methoxycinnamoylated phosphatidylcholine (p-MCA-PC) were obtained in isolated yields of 32% and 3% (w/w), respectively.


1983 ◽  
Vol 66 (5) ◽  
pp. 1220-1225 ◽  
Author(s):  
Robert B Grorud ◽  
John E Forrette

Abstract A high pressure liquid chromatographic method has been developed for liquid herbicide combinations that contain different combinations of 3 active ingredients including 2,4-dichlorophenoxyacetic acid (2,4-D), 2-(2-methyl-4-chlorophenoxy)propionic acid (MCPP), and dicamba. A reverse phase column in the ion suppression mode and a binary solvent system separate all 3 herbicides quantitatively on a single chromatogram. The internal standard solution may contain 2 internal standards, salicylic acid and butyrophenone, for use with certain combinations of the herbicides. The solvent system resolves the compounds of interest from all significant impurities.


Sign in / Sign up

Export Citation Format

Share Document