Molecular Dynamics Study on the Binding of an Anticancer DNA G-Quadruplex Stabilizer, CX-5461, to Human Telomeric, c-KIT1, and c-Myc G-Quadruplexes and a DNA Duplex

2020 ◽  
Vol 60 (10) ◽  
pp. 5203-5224
Author(s):  
Holli-Joi Sullivan ◽  
Brian Chen ◽  
Chun Wu
Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1010 ◽  
Author(s):  
Babitha Machireddy ◽  
Holli-Joi Sullivan ◽  
Chun Wu

Although BRACO19 is a potent G-quadruplex binder, its potential for clinical usage is hindered by its low selectivity towards DNA G-quadruplex over duplex. High-resolution structures of BRACO19 in complex with neither single-stranded telomeric DNA G-quadruplexes nor B-DNA duplex are available. In this study, the binding pathway of BRACO19 was probed by 27.5 µs molecular dynamics binding simulations with a free ligand (BRACO19) to a DNA duplex and three different topological folds of the human telomeric DNA G-quadruplex (parallel, anti-parallel and hybrid). The most stable binding modes were identified as end stacking and groove binding for the DNA G-quadruplexes and duplex, respectively. Among the three G-quadruplex topologies, the MM-GBSA binding energy analysis suggested that BRACO19′s binding to the parallel scaffold was most energetically favorable. The two lines of conflicting evidence plus our binding energy data suggest conformation-selection mechanism: the relative population shift of three scaffolds upon BRACO19 binding (i.e., an increase of population of parallel scaffold, a decrease of populations of antiparallel and/or hybrid scaffold). This hypothesis appears to be consistent with the fact that BRACO19 was specifically designed based on the structural requirements of the parallel scaffold and has since proven effective against a variety of cancer cell lines as well as toward a number of scaffolds. In addition, this binding mode is only slightly more favorable than BRACO19s binding to the duplex, explaining the low binding selectivity of BRACO19 to G-quadruplexes over duplex DNA. Our detailed analysis suggests that BRACO19′s groove binding mode may not be stable enough to maintain a prolonged binding event and that the groove binding mode may function as an intermediate state preceding a more energetically favorable end stacking pose; base flipping played an important role in enhancing binding interactions, an integral feature of an induced fit binding mechanism.


2017 ◽  
Vol 19 (28) ◽  
pp. 18685-18694 ◽  
Author(s):  
Kelly Mulholland ◽  
Farzana Siddiquei ◽  
Chun Wu

Binding modes ofRHPS4to DNA duplex and human teloemeric G-quadruplexes from MD simulations.


RSC Advances ◽  
2015 ◽  
Vol 5 (93) ◽  
pp. 76642-76650 ◽  
Author(s):  
Kiana Gholamjani Moghaddam ◽  
Seyed Majid Hashemianzadeh

Our study provides insight into the effect of different substituents on the G-quadruplex–ligand interactions which helps us rational ligand design.


2000 ◽  
Vol 122 (31) ◽  
pp. 7564-7572 ◽  
Author(s):  
Nad'a Špačková ◽  
Imre Berger ◽  
Jiří Šponer

Crystals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 532
Author(s):  
Jonathan H. Sheehan ◽  
Jarrod A. Smith ◽  
Pradeep S. Pallan ◽  
Terry P. Lybrand ◽  
Martin Egli

The (4′→6′)-linked DNA homolog 2′,3′-dideoxy-β-D-glucopyranosyl nucleic acid (dideoxy-glucose nucleic acid or homo-DNA) exhibits stable self-pairing of the Watson–Crick and reverse-Hoogsteen types, but does not cross-pair with DNA. Molecular modeling and NMR solution studies of homo-DNA duplexes pointed to a conformation that was nearly devoid of a twist and a stacking distance in excess of 4.5 Å. By contrast, the crystal structure of the homo-DNA octamer dd(CGAATTCG) revealed a right-handed duplex with average values for helical twist and rise of ca. 15° and 3.8 Å, respectively. Other key features of the structure were strongly inclined base-pair and backbone axes in the duplex with concomitant base-pair slide and cross-strand stacking, and the formation of a dimer across a crystallographic dyad with inter-duplex base swapping. To investigate the conformational flexibility of the homo-DNA duplex and a potential influence of lattice interactions on its geometry, we used molecular dynamics (MD) simulations of the crystallographically observed dimer of duplexes and an isolated duplex in the solution state. The dimer of duplexes showed limited conformational flexibility, and key parameters such as helical rise, twist, and base-pair slide exhibited only minor fluctuations. The single duplex was clearly more flexible by comparison and underwent partial unwinding, albeit without significant lengthening. Thus, base stacking was preserved in the isolated duplex and two adenosines extruded from the stack in the dimer of duplexes were reinserted into the duplex and pair with Ts in a Hoogsteen mode. Our results confirmed that efficient stacking in homo-DNA seen in the crystal structure of a dimer of duplexes was maintained in the separate duplex. Therefore, lattice interactions did not account for the different geometries of the homo-DNA duplex in the crystal and earlier models that resembled inclined ladders with large base-pair separations that precluded efficient stacking.


Sign in / Sign up

Export Citation Format

Share Document