scholarly journals Efficient Amino Acid Conformer Search with Bayesian Optimization

Author(s):  
Lincan Fang ◽  
Esko Makkonen ◽  
Milica Todorović ◽  
Patrick Rinke ◽  
Xi Chen
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Lu Zhang ◽  
Min Liu ◽  
Xinyi Qin ◽  
Guangzhong Liu

Succinylation is an important posttranslational modification of proteins, which plays a key role in protein conformation regulation and cellular function control. Many studies have shown that succinylation modification on protein lysine residue is closely related to the occurrence of many diseases. To understand the mechanism of succinylation profoundly, it is necessary to identify succinylation sites in proteins accurately. In this study, we develop a new model, IFS-LightGBM (BO), which utilizes the incremental feature selection (IFS) method, the LightGBM feature selection method, the Bayesian optimization algorithm, and the LightGBM classifier, to predict succinylation sites in proteins. Specifically, pseudo amino acid composition (PseAAC), position-specific scoring matrix (PSSM), disorder status, and Composition of k -spaced Amino Acid Pairs (CKSAAP) are firstly employed to extract feature information. Then, utilizing the combination of the LightGBM feature selection method and the incremental feature selection (IFS) method selects the optimal feature subset for the LightGBM classifier. Finally, to increase prediction accuracy and reduce the computation load, the Bayesian optimization algorithm is used to optimize the parameters of the LightGBM classifier. The results reveal that the IFS-LightGBM (BO)-based prediction model performs better when it is evaluated by some common metrics, such as accuracy, recall, precision, Matthews Correlation Coefficient (MCC), and F -measure.


Author(s):  
M.K. Lamvik ◽  
L.L. Klatt

Tropomyosin paracrystals have been used extensively as test specimens and magnification standards due to their clear periodic banding patterns. The paracrystal type discovered by Ohtsuki1 has been of particular interest as a test of unstained specimens because of alternating bands that differ by 50% in mass thickness. While producing specimens of this type, we came across a new paracrystal form. Since this new form displays aligned tropomyosin molecules without the overlaps that are characteristic of the Ohtsuki-type paracrystal, it presents a staining pattern that corresponds to the amino acid sequence of the molecule.


Author(s):  
A. J. Tousimis

The elemental composition of amino acids is similar to that of the major structural components of the epithelial cells of the small intestine and other tissues. Therefore, their subcellular localization and concentration measurements are not possible by x-ray microanalysis. Radioactive isotope labeling: I131-tyrosine, Se75-methionine and S35-methionine have been successfully employed in numerous absorption and transport studies. The latter two have been utilized both in vitro and vivo, with similar results in the hamster and human small intestine. Non-radioactive Selenomethionine, since its absorption/transport behavior is assumed to be the same as that of Se75- methionine and S75-methionine could serve as a compound tracer for this amino acid.


Author(s):  
Chi-Ming Wei ◽  
Margaret Hukee ◽  
Christopher G.A. McGregor ◽  
John C. Burnett

C-type natriuretic peptide (CNP) is a newly identified peptide that is structurally related to atrial (ANP) and brain natriuretic peptide (BNP). CNP exists as a 22-amino acid peptide and like ANP and BNP has a 17-amino acid ring formed by a disulfide bond. Unlike these two previously identified cardiac peptides, CNP lacks the COOH-terminal amino acid extension from the ring structure. ANP, BNP and CNP decrease cardiac preload, but unlike ANP and BNP, CNP is not natriuretic. While ANP and BNP have been localized to the heart, recent investigations have failed to detect CNP mRNA in the myocardium although small concentrations of CNP are detectable in the porcine myocardium. While originally localized to the brain, recent investigations have localized CNP to endothelial cells consistent with a paracrine role for CNP in the control of vascular tone. While CNP has been detected in cardiac tissue by radioimmunoassay, no studies have demonstrated CNP localization in normal human heart by immunoelectron microscopy.


1979 ◽  
Vol 7 (1) ◽  
pp. 261-262
Author(s):  
E. V. ROWSELL

2001 ◽  
Vol 120 (5) ◽  
pp. A153-A153
Author(s):  
S MIYAMOTO ◽  
K KATO ◽  
Y ISHII ◽  
S ASAI ◽  
T NAGAISHI ◽  
...  

1950 ◽  
Vol 16 (4) ◽  
pp. 757-763 ◽  
Author(s):  
A. Leonard Sheffner ◽  
Joseph B. Kirsner ◽  
Walter L. Palmer

Sign in / Sign up

Export Citation Format

Share Document