Discovery of a Monoiodo Aza-BODIPY Near-Infrared Photosensitizer: in vitro and in vivo Evaluation for Photodynamic Therapy

2020 ◽  
Vol 63 (17) ◽  
pp. 9950-9964 ◽  
Author(s):  
Zhiliang Yu ◽  
Junliang Zhou ◽  
Xin Ji ◽  
Guangyu Lin ◽  
Shuang Xu ◽  
...  
2021 ◽  
Vol 17 (2) ◽  
pp. 205-215
Author(s):  
Zhenbo Sun ◽  
Mingfang Luo ◽  
Jia Li ◽  
Ailing Wang ◽  
Xucheng Sun ◽  
...  

Imaging-guided cancer theranostic is a promising strategy for cancer diagnostic and therapeutic. Photodynamic therapy (PDT), as an approved treatment modality, is limited by the poor solubility and dispersion of photosensitizers (PS) in biological fluids. Herein, it is demonstrated that superparamagnetic iron oxide (SPIO)-based nanoparticles (SCFs), prepared by conjugated with Chlorin e6 (Ce6) and modified with folic acid (FA) on the surface, can be used as versatile drug delivery vehicles for effective PDT. The nanoparticles are great carriers for photosensitizer Ce6 with an extremely high loading efficiency. In vitro fluorescence imaging and in vivo magnetic resonance imaging (MRI) results indicated that SCFs selectively accumulated in tumor cells. Under near-infrared laser irradiation, SCFs were confirmed to be capable of inducing low cell viability of RM-1 cells In vitro and displaying efficient tumor ablation with negligible side effects in tumor-bearing mice models.


2020 ◽  
Vol 11 (Vol.11, no.3) ◽  
pp. 279-287
Author(s):  
Corina-Elena TIȘLER ◽  
Mîndra-Eugenia BADEA ◽  
Smaranda BUDURU ◽  
Andreea KUI ◽  
Mihaela FLORIA ◽  
...  

Introduction: Photodynamic therapy (PDT) is a therapy involving light and a photosensitising chemical substance, used in conjunction with molecular oxygen in order to elicit cell death (photo-toxicity) and thus ability to kill microbial cells, including bacteria, fungi and viruses. Photodynamic therapy is an alternative method of biofilm disruption and it is considered a new way of microorganism inactivation. It is also an additional procedure to reduce the infection rate in patients, caused by the increasing antimicrobials resistance of bacteria. The aim of this literature review was to evaluate the specific effects and the antibacterial effectiveness of photodynamic therapy using different types of photosensitizers (Erythrosine, Rose Bengal, Toluidine blue, Methylene blue, Ozone, Riboflavin, Curcumin, Chlorhexidine, SAPYR) and a visible light of a specific wavelength for each photosensitizer and to reveal the applications of PDT in periodontics, endodontics, prosthodontics and dental caries. Methods: A research of literature was performed in an attempt to find all the articles published on this topic in the last 10 years. The articles was searched by using a certain combination of different keywords (photodynamic therapy ) and (diode laser ) and (teeth) in PubMed database. Results: A total number of 83 articles were found. After applying inclusion and exclusion criteria, 35 articles were taken into consideration for our study and among them 4 were a manuscript, 3 was a review of literature, 1 was an in vivo evaluation and 27 were in vitro studies. Conclusion: Considering that none of the disinfection methods can completely remove the biofilm, PDT is a therapeutic tool complementary to conventional disinfection, with great applicability in dentistry. PDT showed significantly efficacy in reduction of biofilms. Exposure to light in the presence of a photosensitizing chemical substance helps in the reduction of microbes and the protocols could be recommended for clinical usage, but only together with ‘classic ‘ disinfection.


2009 ◽  
Vol 8 (3) ◽  
pp. 405 ◽  
Author(s):  
Samuel Douillard ◽  
David Olivier ◽  
Thierry Patrice

2018 ◽  
Vol 29 (7) ◽  
pp. 1171-1178 ◽  
Author(s):  
Qingle Chen ◽  
Yanhong Ma ◽  
Jisi Zhao ◽  
Mei Zhao ◽  
Wenjing Li ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Enyu Shi ◽  
Liya Bai ◽  
Lujia Mao ◽  
Hanping Wang ◽  
Xiaoying Yang ◽  
...  

Abstract Background Periodontitis is a chronic inflammatory disease in oral cavity owing to bacterial infection. Photothermal therapy (PTT) and photodynamic therapy (PDT) have many advantages for antibacterial treatment. As an excellent photosensitizer, indocyanine green (ICG) shows prominent photothermal and photodynamic performances. However, it is difficult to pass through the negatively charged bacterial cell membrane, thus limiting its antibacterial application for periodontitis treatment. Results In this work, self-assembled nanoparticles containing ICG and polycationic brush were prepared for synergistic PTT and PDT against periodontitis. First, a star-shaped polycationic brush poly(2-(dimethylamino)ethyl methacrylate) (sPDMA) was synthesized via atom transfer radical polymerization (ATRP) of DMA monomer from bromo-substituted β-cyclodextrin initiator (CD-Br). Next, ICG was assembled with sPDMA to prepare ICG-loaded sPDMA (sPDMA@ICG) nanoparticles (NPs) and the physicochemical properties of these NPs were characterized systematically. In vitro antibacterial effects of sPDMA@ICG NPs were investigated in porphyromonas gingivalis (Pg), one of the recognized periodontitis pathogens. A ligature-induced periodontitis model was established in Sprague–Dawley rats for in vivo evaluation of anti-periodontitis effects of sPDMA@ICG NPs. Benefiting from the unique brush-shaped architecture of sPDMA polycation, sPDMA@ICG NPs significantly promoted the adsorption and penetration of ICG into the bacterial cells and showed excellent PTT and PDT performances. Both in vitro and in vivo, sPDMA@ICG NPs exerted antibacterial and anti-periodontitis actions via synergistic PTT and PDT. Conclusions A self-assembled nanosystem containing ICG and polycationic brush has shown promising clinical application for synergistic PTT and PDT against periodontitis. Graphical Abstract


2020 ◽  
Vol 6 (22) ◽  
pp. eaaz9014 ◽  
Author(s):  
Mimi Wan ◽  
Qi Wang ◽  
Rongliang Wang ◽  
Rui Wu ◽  
Ting Li ◽  
...  

The treatment difficulties of venous thrombosis include short half-life, low utilization, and poor penetration of drugs at thrombus site. Here, we develop one kind of mesoporous/macroporous silica/platinum nanomotors with platelet membrane (PM) modification (MMNM/PM) for sequentially targeting delivery of thrombolytic and anticoagulant drugs for thrombus treatment. Regulated by the special proteins on PM, the nanomotors target the thrombus site and then PM can be ruptured under near-infrared (NIR) irradiation to achieve desirable sequential drug release, including rapid release of thrombolytic urokinase (3 hours) and slow release of anticoagulant heparin (>20 days). Meantime, the motion ability of nanomotors under NIR irradiation can effectively promote them to penetrate deeply in thrombus site to enhance retention ratio. The in vitro and in vivo evaluation results confirm that the synergistic effect of targeting ability from PM and motion ability from nanomotors can notably enhance the thrombolysis effect in both static/dynamic thrombus and rat model.


2021 ◽  
pp. 109553
Author(s):  
Elvira García de Jalón ◽  
Gorka Ruiz de Garibay ◽  
Bengt Erik Haug ◽  
Emmet McCormack

Sign in / Sign up

Export Citation Format

Share Document