Paired Utility of Aza-Amino Acyl Proline and Indolizidinone Amino Acid Residues for Peptide Mimicry: Conception of Prostaglandin F2α Receptor Allosteric Modulators That Delay Preterm Birth

2019 ◽  
Vol 62 (9) ◽  
pp. 4500-4525 ◽  
Author(s):  
Fatemeh M. Mir ◽  
N. D. Prasad Atmuri ◽  
Carine B. Bourguet ◽  
Jennifer Rodon Fores ◽  
Xin Hou ◽  
...  
2014 ◽  
Vol 92 (11) ◽  
pp. 1031-1040 ◽  
Author(s):  
Carine B. Bourguet ◽  
Audrey Claing ◽  
Stéphane A. Laporte ◽  
Terence E. Hébert ◽  
Sylvain Chemtob ◽  
...  

Premature birth (<37 weeks gestation) is the major cause of perinatal mortality and morbidity and has been steadily increasing worldwide. Towards the rational design of more effective therapeutic agents for inhibiting uterine contractions and prolonging gestation (a so-called tocolytic drug), our team has targeted the prostaglandin F2α receptor (FP) employing a peptidomimetic approach designed to provide modulators of this novel target. We identified first a lead peptide (PDC113) (1) based on the sequence of the second extracellular loop of FP on the basis that the loop itself might modulate receptor activation. Systematic study of the structure−activity relationships of 1 generated hypotheses concerning the conformation and side-chains responsible for activity that led to the synthesis of PDC113.31 (2), a potent all d-amino acid peptide, which has successfully completed Phase 1b clinical trials. Employing indolizidinone amino acids, peptide mimics were developed that served to probe the mechanism of FP modulation. For example, PDC113.824 (9) was shown to allosterically regulate FP activity contingent on the presence of prostaglandin F2α by a mechanism implicating biased signalling. Although attempts to understand the turn geometry responsible for the activity of 9 by replacement of its indolizidin-2-one moiety with other azabicycloalkanones failed to produce biologically active analogs, employment of aza-aminoacyl-proline analogs resulted in a series of FP modulators exhibiting distinct effects on different G protein-mediated signalling pathways. Our program has thus contributed novel probes for understanding the chemical biology of FP as well as new therapeutic agents with promise for inhibiting uterine contractions and preventing preterm birth.


1987 ◽  
Vol 57 (01) ◽  
pp. 017-019 ◽  
Author(s):  
Magda M W Ulrich ◽  
Berry A M Soute ◽  
L Johan M van Haarlem ◽  
Cees Vermeer

SummaryDecarboxylated osteocalcins were prepared and purified from bovine, chicken, human and monkey bones and assayed for their ability to serve as a substrate for vitamin K-dependent carboxylase from bovine liver. Substantial differences were observed, especially between bovine and monkey d-osteocalcin. Since these substrates differ only in their amino acid residues 3 and 4, it seems that these residues play a role in the recognition of a substrate by hepatic carboxylase.


2018 ◽  
Author(s):  
Allan J. R. Ferrari ◽  
Fabio C. Gozzo ◽  
Leandro Martinez

<div><p>Chemical cross-linking/Mass Spectrometry (XLMS) is an experimental method to obtain distance constraints between amino acid residues, which can be applied to structural modeling of tertiary and quaternary biomolecular structures. These constraints provide, in principle, only upper limits to the distance between amino acid residues along the surface of the biomolecule. In practice, attempts to use of XLMS constraints for tertiary protein structure determination have not been widely successful. This indicates the need of specifically designed strategies for the representation of these constraints within modeling algorithms. Here, a force-field designed to represent XLMS-derived constraints is proposed. The potential energy functions are obtained by computing, in the database of known protein structures, the probability of satisfaction of a topological cross-linking distance as a function of the Euclidean distance between amino acid residues. The force-field can be easily incorporated into current modeling methods and software. In this work, the force-field was implemented within the Rosetta ab initio relax protocol. We show a significant improvement in the quality of the models obtained relative to current strategies for constraint representation. This force-field contributes to the long-desired goal of obtaining the tertiary structures of proteins using XLMS data. Force-field parameters and usage instructions are freely available at http://m3g.iqm.unicamp.br/topolink/xlff <br></p></div><p></p><p></p>


Sign in / Sign up

Export Citation Format

Share Document