scholarly journals Correction to Resorcinol-Type Strigolactone Mimics as Potent Germinators of the Parasitic Plants Striga hermonthica and Phelipanche ramosa

2019 ◽  
Vol 82 (1) ◽  
pp. 168-168
Author(s):  
Marcela Dvorakova ◽  
Adela Hylova ◽  
Petr Soudek ◽  
Katarzyna Retzer ◽  
Lukas Spichal ◽  
...  
2020 ◽  
Author(s):  
Ken-ichi Kurotani ◽  
Takanori Wakatake ◽  
Yasunori Ichihashi ◽  
Koji Okayasu ◽  
Yu Sawai ◽  
...  

AbstractTissue adhesion between plant species occurs both naturally and artificially. Parasitic plants establish symbiotic relationship with host plants by adhering tissues at roots or stems. Plant grafting, on the other hand, is a widely used technique in agriculture to adhere tissues of two stems. While compatibility of tissue adhesion in plant grafting is often limited within close relatives, parasitic plants exhibit much wider compatibilities. For example, the Orobanchaceae parasitic plant Striga hermonthica is able to infect Poaceae crop plants, causing a serious agricultural loss. Here we found that the model Orobanchaceae parasite plant Phtheirospermum japonicum can be grafted on to interfamily species, such as Arabidopsis, a Brassicaceae plant. To understand molecular basis of tissue adhesion between distant plant species, we conducted comparative transcriptome analyses on both infection and grafting by P. japonicum on Arabidopsis. Through gene clustering, we identified genes upregulated during these tissue adhesion processes, which include cell proliferation- and cell wall modification-related genes. By comparing with a transcriptome dataset of interfamily grafting between Nicotiana and Arabidopsis, we identified 9 genes commonly induced in tissue adhesion between distant species. Among them, we showed a gene encoding secreted type of β-1,4-glucanase plays an important role for plant parasitism. Our data provide insights into the molecular commonality between parasitism and grafting in plants.Significance StatementComprehensive sequential RNA-Seq datasets for parasitic infection of the root and grafting of the stem between P. japonicum and Arabidopsis revealed that molecular events of parasitism and grafting are substantially different and only share a part of events such as cell proliferation and cell wall modification. This study demonstrated that a secreted type of β-1,4-glucanase gene expressed in cells located at the parasite–host interface as an important factor for parasitism in the Orobanchaceae.


2021 ◽  
Author(s):  
Anna Kokla ◽  
Martina Leso ◽  
Xiang Zhang ◽  
Jan Simura ◽  
Songkui Cui ◽  
...  

Parasitic plants are globally prevalent pathogens that withdraw nutrients from their host plants using an organ known as the haustorium. Some, the obligate parasites are entirely dependent on their hosts for survival, whereas others, the facultative parasites, are independent of their hosts and infect depending on environmental conditions and the presence of the host. How parasitic plants regulate their haustoria in response to their environment is largely unknown. Using the facultative root parasite Phtheirospermum japonicum, we found that external nutrient levels modified haustorial numbers. This effect was independent of phosphate and potassium but nitrates were sufficient and necessary to block haustoria formation. Elevated nitrate levels prevented the activation of hundreds of genes associated with haustoria formation, downregulated genes associated with xylem development and increased levels of abscisic acid (ABA). Enhancing ABA levels independently of nitrates blocked haustoria formation whereas reducing ABA biosynthesis allowed haustoria to form in the presence of nitrates suggesting that nitrates mediated haustorial regulation in part via ABA production. Nitrates also inhibited haustoria formation and reduced infectivity of the obligate root parasite Striga hermonthica, suggesting a more widely conserved mechanism by which parasitic plants adapt their extent of parasitism according to nitrogen availability in the external environment.


2021 ◽  
Author(s):  
Natsumi Masumoto ◽  
Yuki Suzuki ◽  
Songkui Cui ◽  
Mayumi Wakazaki ◽  
Mayuko Sato ◽  
...  

Abstract Parasitic plants infect other plants by forming haustoria, specialized multicellular organs consisting of several cell types, each of which has unique morphological features and physiological roles associated with parasitism. Understanding the spatial organization of cell types is, therefore, of great importance in elucidating the functions of haustoria. Here, we report a three-dimensional (3-D) reconstruction of haustoria from two Orobanchaceae species, the obligate parasite Striga hermonthica infecting rice (Oryza sativa) and the facultative parasite Phtheirospermum japonicum infecting Arabidopsis (Arabidopsis thaliana). In addition, field-emission scanning electron microscopy observation revealed the presence of various cell types in haustoria. Our images reveal the spatial arrangements of multiple cell types inside haustoria and their interaction with host roots. The 3-D internal structures of haustoria highlight differences between the two parasites, particularly at the xylem connection site with the host. Our study provides cellular and structural insights into haustoria of S. hermonthica and P. japonicum and lays the foundation for understanding haustorium function.


Author(s):  
Alexandre de Saint Germain ◽  
Anse Jacobs ◽  
Guillaume Brun ◽  
Jean-Bernard Pouvreau ◽  
Lukas Braem ◽  
...  

AbstractPhelipanche ramosa is an obligate root-parasitic weed threatening major crops in central Europe. For its germination, it has to perceive various structurally diverging host-exuded signals, including isothiocyanates (ITCs) and strigolactones (SLs). However, the receptors involved are still uncharacterized. Here, we identified five putative SL receptors in P. ramosa, of which PrKAI2d3 is involved in seed germination stimulation. We established the high plasticity of PrKAI2d3, allowing interaction with different chemicals, including ITCs. The SL perception mechanism of PrKAI2d3 is similar to that of endogenous SLs in non-parasitic plants. We provide evidence that the PrKAI2d3 enzymatic activity confers hypersensitivity to SLs. Additionally, we demonstrated that methylbutenolide-OH binds PrKAI2d3 and stimulates P. ramosa germination with a bioactivity comparable to that of ITCs. This study highlights that P. ramosa has extended its signal perception system during evolution, a fact to be considered in the development of specific and efficient biocontrol methods.


Author(s):  
Natsumi Masumoto ◽  
Yuki Suzuki ◽  
Songkui Cui ◽  
Mayumi Wakazaki ◽  
Mayuko Sato ◽  
...  

AbstractParasitic plants infect other plants by forming haustoria, specialized multicellular organs consisting of several cell types each of which has unique morphological features and physiological roles associated with parasitism. Understanding the spatial organization of cell types is, therefore, of great importance in elucidating the functions of haustoria. Here, we report a three-dimensional (3-D) reconstruction of haustoria from two Orobanchaceae species, the obligate parasite Striga hermonthica infecting rice and the facultative parasite Phtheirospermum japonicum infecting Arabidopsis. Our images reveal the spatial arrangements of multiple cell types inside haustoria and their interaction with host roots. The 3-D internal structures of haustoria highlight differences between the two parasites, particularly at the xylem connection site with the host. Our study provides structural insights into how organs interact between hosts and parasitic plants.One-sentence summaryThree-dimensional image reconstruction was used to visualize the spatial organization of cell types in the haustoria of parasitic plants with special reference to their interaction with host roots.


2021 ◽  
Vol 130 ◽  
pp. 126368
Author(s):  
Olivia Pointurier ◽  
Stéphanie Gibot-Leclerc ◽  
Delphine Moreau ◽  
Nathalie Colbach

2020 ◽  
pp. 1-7
Author(s):  
Katarzyna Durlik ◽  
Paulina Żarnowiec ◽  
Renata Piwowarczyk ◽  
Wiesław Kaca

Abstract Endophytic microbiomes play a beneficial role in the development and protection of plants. However, seed-borne endophytic bacteria have not yet been fully explored. Investigation of parasitic plants, whose existence depends on yet poorly understood and complicated relationships with microorganisms and hosts, is particularly crucial. Endophytic bacteria promote seed conservation and facilitate seed germination in soil. Several root holoparasites from the Orobanchaceae family are the most aggressive broomrape species, often causing serious yield losses in important crops. Parasitic plants are characterized by the production of a large number of some of the smallest seeds in the world's flora, allowing them to stay viable in the soil for several dozen years. This study's aim was to isolate and characterize the seed endophyte and surface bacteria of the most aggressive and widespread broomrape weed, Phelipanche ramosa. We isolated two endophytic bacteria from within the seeds which are closely related to Brevibacterium frigoritolerans and Bacillus simplex described as soil bacteria, highly resistant to environmental conditions, and as plant growth-promoting rhizobacteria. Moreover, we isolated three strains from the surface of non-sterile seeds; all three isolates were related to the Bacillus cereus group.


Author(s):  
John Kuo ◽  
John S. Pate

Our understanding of nutrient transfer between host and flowering parasitic plants is usually based mainly on physiological concepts, with little information on haustorial structure related to function. The aim of this paper is to study the haustorial interface and possible pathways of water and solute transfer between a number of host and parasites.Haustorial tissues were fixed in glutaraldehyde and embedded in glycol methacrylate (LM), or fixed in glutaraldehyde then OsO4 and embedded in Spurr’s resin (TEM).Our study shows that lumen to lumen continuity occurs between tracheary elements of a host and four S.W. Australian species of aerial mistletoes (Fig. 1), and some root hemiparasites (Exocarpos spp. and Anthobolus foveolatus) (Fig. 2). On the other hand, haustorial interfaces of the root hemiparasites Olax phyllanthi and Santalum (2 species) are comprised mainly of parenchyma, as opposed to terminating tracheads or vessels, implying that direct solution transfer between partners via vessels or tracheary elements may be limited (Fig. 3).


Sign in / Sign up

Export Citation Format

Share Document