Culturable endophytic bacteria from Phelipanche ramosa (Orobanchaceae) seeds

2020 ◽  
pp. 1-7
Author(s):  
Katarzyna Durlik ◽  
Paulina Żarnowiec ◽  
Renata Piwowarczyk ◽  
Wiesław Kaca

Abstract Endophytic microbiomes play a beneficial role in the development and protection of plants. However, seed-borne endophytic bacteria have not yet been fully explored. Investigation of parasitic plants, whose existence depends on yet poorly understood and complicated relationships with microorganisms and hosts, is particularly crucial. Endophytic bacteria promote seed conservation and facilitate seed germination in soil. Several root holoparasites from the Orobanchaceae family are the most aggressive broomrape species, often causing serious yield losses in important crops. Parasitic plants are characterized by the production of a large number of some of the smallest seeds in the world's flora, allowing them to stay viable in the soil for several dozen years. This study's aim was to isolate and characterize the seed endophyte and surface bacteria of the most aggressive and widespread broomrape weed, Phelipanche ramosa. We isolated two endophytic bacteria from within the seeds which are closely related to Brevibacterium frigoritolerans and Bacillus simplex described as soil bacteria, highly resistant to environmental conditions, and as plant growth-promoting rhizobacteria. Moreover, we isolated three strains from the surface of non-sterile seeds; all three isolates were related to the Bacillus cereus group.

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1796
Author(s):  
Pilar Martínez-Hidalgo ◽  
José David Flores-Félix ◽  
Fernando Sánchez-Juanes ◽  
Raúl Rivas ◽  
Pedro F. Mateos ◽  
...  

Canola (Brassica napus L. var. oleracea) is the third most common oil-producing crop worldwide after palm and soybean. Canola cultivation requires the use of chemical fertilizers, but the amount required can be reduced by applying plant growth-promoting bacteria (PGPB). Among PGPB, endophytic bacteria have certain advantages as biofertilizers, but canola endophytic bacteria have rarely been studied. In this work, we identified a collection of bacterial endophytes isolated from canola roots using MALDI-TOF MS, a technique that is still rarely used for the identification of such bacteria, and rrs gene sequencing, a methodology that is commonly used to identify canola endophytes. The results demonstrated that some bacterial isolates from canola roots belonged to the genera Bacillus, Neobacillus, Peribacillus (Pe.), and Terribacillus, but most isolates belonged to the genera Paenibacillus (P.) and Pseudomonas (Ps.). Inoculation of these isolates indicated that several of them could efficiently promote canola seedling growth in hydroponic conditions. These results were then confirmed in a microcosm experiment using agricultural soil, which demonstrated that several isolates of Pseudomonas thivervalensis, Paenibacillus amylolyticus, Paenibacillus polymyxa, Paenibacillus sp. (Paenibacillus glucanolyticus/Paenibacillus lautus group), and Peribacillus simplex (previously Bacillus simplex) could efficiently promote canola shoot growth under greenhouse conditions. Among them, the isolates of Paenibacillus and Peribacillus were the most promising biofertilizers for canola crops as they are sporulated rods, which is an advantageous trait when formulating biofertilizers.


1995 ◽  
Vol 41 (6) ◽  
pp. 533-536 ◽  
Author(s):  
Bernard R. Glick ◽  
Damir M. Karaturovíc ◽  
Peter C. Newell

A rapid and novel procedure for the isolation of plant growth promoting rhizobacteria (PGPR) is described. This method entails screening soil bacteria for the ability to utilize the compound 1-aminocyclopropane-1-carboxylate (ACC) as a sole N source, a trait that is a consequence of the presence of the activity of the enzyme ACC deaminase. This trait appears to be limited to soil bacteria that are also capable of stimulating plant growth. Seven different soil samples from two geographically disparate locations were found to contain pseudomonads that were able to to utilize ACC as a N source. Each of the seven strains was shown, by the ability of the bacterium to promote canola seedling root elongation under gnotobiotic conditions, to be a PGPR. The method described here may be used to replace the otherwise slow and tedious process of testing individual bacterial strains for their ability to promote plant growth, thereby significantly speeding up the process of finding new PGPR.Key words: plant growth promoting rhizobacteria, PGPR, 1-aminocyclopropane-1-carboxylate, ACC, ACC deaminase, bacterial fertilizer, soil bacteria.


1987 ◽  
Vol 33 (6) ◽  
pp. 498-503 ◽  
Author(s):  
D. R. Polonenko ◽  
F. M. Scher ◽  
J. W. Kloepper ◽  
C. A. Singleton ◽  
M. Laliberte ◽  
...  

Eighteen strains of soybean root colonizing soil bacteria were tested for interference with nodulation of soybeans (Glycine max (L.) Merrill) grown in a field soil – perlite mix or in a soil-less planting medium. Seventeen of the strains were identified as Pseudomonas fluorescens or Pseudomonas putida and one as Aeromonas hydrophila. All strains colonized soybean roots at levels of log 3.9 to 5.7 cfu/g root. Although nine strains increased significantly the weights of nodules formed by Bradyrhizobium japonicum 110 on soybeans grown in the soil–perlite mix, numbers of nodules increased in only three treatments. Significant increases in nodule numbers were not observed when the soil bacteria were tested with B. japonicum 118, and only two treatments increased nodule weights when compared with the controls. One of the 18 treatments increased and 1 decreased significantly the dry weights of shoots of plants inoculated with B. japonicum 110 and grown in the soil-less mix. Only one treatment reduced the dry weights of roots. Several strains stimulated increases in the dry weights of shoots and roots of plants inoculated with B. japonicum 118, but these effects were not correlated with changes in nodule numbers or weights. The results suggest that root colonizing bacteria generally do not interfere with the ability of B. japonicum to form nodules in soybean roots and that certain strains may actually enhance nodulation and plant growth. The relevance of these results for the development of improved Bradyrhizobium inoculant products by the addition of selected plant growth promoting rhizobacteria is discussed.


2019 ◽  
Author(s):  
Guenevere Perry ◽  
Diane Williams

The scope of the project was to develop a method to induce soil bacteria to biosynthesize compounds that retard the effects of ethylene induced ripening in climacteric fruits. The study was randomized. Organic bananas selected for the study were visibly inspected to ensure the fruit was unripen with no visible signs of bruising, spotting, or infection from a local distributor. Four trials were conducted from June 5th - August 5th 2014 with 3 replicates (3-4 bananas per experimental unit) in 4 trial studies for 3 days at room temperature. A mixed culture of plant growth promoting rhizobacteria (PGPR) were collected from soil surrounding the roots of young fruit bearing trees. Microbes were mixed with no-carbon source media, and cultured with an ethylene for 3 d at room temperature in a closed container. Induced soil was used to delay ripening. Microbes induced with media and ethylene delayed ripening 100% of the time in all experimental units compared to control samples, while microbes cultured with media (no ethylene) delayed ripening less than 10% of the time compared to the control. These cells also appeared to increase the incidence of fungal infection in the fruit. The findings suggest induced microbes may convert ethylene into ethanol then acetaldehyde. The two compounds may form an acetaldehyde/ethanol vapor that delays ripening, and a secondary nitrile compound that inhibits fungal growth.


Author(s):  
Gisela Aguilar-Benítez ◽  
María Myrna Solís-Oba ◽  
Rigoberto Castro-Rivera ◽  
Valentín López-Gayou ◽  
José Pablo Lara-Ávila ◽  
...  

El objetivo fue determinar el efecto de composta, digestato y bacterias plant growth-promoting bacteria (PGPB) en la curva de crecimiento, acumulación de biomasa, tasa de crecimiento, altura de planta y unidades soil plant analysis development (SPAD) en pasto ovillo recién establecido, bajo condiciones de invernadero. Los tratamientos fueron: digestato (60%), composta (10% en base seca del suelo), bacterias: Brevibacterium frigoritolerans, Bacillus simplex, Pseudomonas putida, control positivo (fertilización con triple 17) y el control negativo (suelo sin fertilización). Se utilizó un diseño experimental completamente al azar, la unidad experimental fue una maceta con diez tallos de pasto ovillo, con cuatro repeticiones por tratamiento. Los valores más altos (p< 0.05) de materia seca (6.4 g MS maceta), tasa de crecimiento (0.15 g MS maceta d-1) y altura de forraje (18.3 cm) se registraron en el tratamiento con composta; donde el rendimiento final de materia seca superó 200% al testigo negativo. El tratamiento con digestato evidenció valores inferiores a los obtenidos con composta, pero superó al resto de los tratamientos. Las mejores bacterias PGPB fueron Pseudomonas putida y Bacillus simplex que superaron el rendimiento de materia seca 25 y 37% con respecto a Brevibacterium frigoritolerans y al control negativo, respectivamente. Las bacterias PGPB pueden ser una alternativa de fertilización ya que el rendimiento de materia seca fue mayor que con el control negativo y se igualó al rendimiento obtenido con fertilización química; sin embargo, los dos fertilizantes orgánicos (composta y digestato) favorecieron el mayor rendimiento de materia seca.


2011 ◽  
Vol 26 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Sava Vrbnicanin ◽  
Dragana Bozic ◽  
Marija Saric ◽  
Danijela Pavlovic ◽  
Vera Raicevic

Soil bacteria are able either to stimulate or inhibit seed germination. If seed germination is stimulated, the seedlings of weed species emerge more uniformly, so that they could be killed in the next step of weed control. This investigation focused on testing the germination of Ambrosia artemisiifolia L. on several media: Pseudomonas fluorescens (B1), Azotobacter chroococcum (B2), Bacillus licheniformis (B3), B. pumilus (B4), B. amyloliquefaciens (B5). In control, seeds germinated in water. Seed germination varied depending on bacterial media. Germination was inhibited by bacterial treatments B1 and B3, treatments B2 and B4 stimulated germination, while germination in treatment B5 was similar to control.


1995 ◽  
Vol 41 (6) ◽  
pp. 445-451 ◽  
Author(s):  
Weizhen Tang ◽  
J. J. Pasternak ◽  
Bernard R. Glick

Transformation of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 with broad-host-range vectors can affect the growth of the bacterium, its ability to promote root elongation of canola seedlings under gnotobiotic conditions, and its persistence in soil. Plasmid transformants, and a transposon-mutagenized derivative of P. putida GR12-2, fell into two classes with respect to these three attributes: strains that were clearly diminished in these capabilities and strains that behaved like the nontransformed wild type. These differences can be accounted for by the imposition of a metabolic load that is created by some types of genetic modification that results in a physiological impairment of the modified bacterium and decreases its ability to function as a plant growth promoting rhizobacterium.Key words: plant growth promoting rhizobacteria, PGPR, bacterial fertilizer, soil bacteria, soil persistence, microcosm.


1995 ◽  
Vol 41 (2) ◽  
pp. 109-117 ◽  
Author(s):  
Bernard R. Glick

The ways in which plant growth promoting rhizobacteria facilitate the growth of plants are considered and discussed. Both indirect and direct mechanisms of plant growth promotion are dealt with. The possibility of improving plant growth promoting rhizobacteria by specific genetic manipulation is critically examined.Key words: plant growth promoting rhizobacteria, PGPR, bacterial fertilizer, soil bacteria.


2019 ◽  
Author(s):  
Guenevere Perry ◽  
Diane Williams

The scope of the project was to develop a method to induce soil bacteria to biosynthesize compounds that retard the effects of ethylene induced ripening in climacteric fruits. The study was randomized. Organic bananas selected for the study were visibly inspected to ensure the fruit was unripen with no visible signs of bruising, spotting, or infection from a local distributor. Four trials were conducted from June 5th - August 5th 2014 with 3 replicates (3-4 bananas per experimental unit) in 4 trial studies for 3 days at room temperature. A mixed culture of plant growth promoting rhizobacteria (PGPR) were collected from soil surrounding the roots of young fruit bearing trees. Microbes were mixed with no-carbon source media, and cultured with an ethylene for 3 d at room temperature in a closed container. Induced soil was used to delay ripening. Microbes induced with media and ethylene delayed ripening 100% of the time in all experimental units compared to control samples, while microbes cultured with media (no ethylene) delayed ripening less than 10% of the time compared to the control. These cells also appeared to increase the incidence of fungal infection in the fruit. The findings suggest induced microbes may convert ethylene into ethanol then acetaldehyde. The two compounds may form an acetaldehyde/ethanol vapor that delays ripening, and a secondary nitrile compound that inhibits fungal growth.


Sign in / Sign up

Export Citation Format

Share Document