scholarly journals Exciton Delocalization and Scaffold Stability in Bridged Nucleotide-Substituted, DNA Duplex-Templated Cyanine Aggregates

Author(s):  
Simon K. Roy ◽  
Olga A. Mass ◽  
Donald L. Kellis ◽  
Christopher K. Wilson ◽  
John A. Hall ◽  
...  
Keyword(s):  
Biochemistry ◽  
1992 ◽  
Vol 31 (48) ◽  
pp. 12096-12102 ◽  
Author(s):  
G. Eric Plum ◽  
Arthur P. Grollman ◽  
Frances Johnson ◽  
Kenneth J. Breslauer

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bo Zhang ◽  
Diyin Luo ◽  
Yu Li ◽  
Vanja Perčulija ◽  
Jing Chen ◽  
...  

AbstractCas12i is a newly identified member of the functionally diverse type V CRISPR-Cas effectors. Although Cas12i has the potential to serve as genome-editing tool, its structural and functional characteristics need to be investigated in more detail before effective application. Here we report the crystal structures of the Cas12i1 R-loop complexes before and after target DNA cleavage to elucidate the mechanisms underlying target DNA duplex unwinding, R-loop formation and cis cleavage. The structure of the R-loop complex after target DNA cleavage also provides information regarding trans cleavage. Besides, we report a crystal structure of the Cas12i1 binary complex interacting with a pseudo target oligonucleotide, which mimics target interrogation. Upon target DNA duplex binding, the Cas12i1 PAM-interacting cleft undergoes a remarkable open-to-closed adjustment. Notably, a zipper motif in the Helical-I domain facilitates unzipping of the target DNA duplex. Formation of the 19-bp crRNA-target DNA strand heteroduplex in the R-loop complexes triggers a conformational rearrangement and unleashes the DNase activity. This study provides valuable insights for developing Cas12i1 into a reliable genome-editing tool.


2021 ◽  
Author(s):  
Cyong-Ru Jhan ◽  
Roshan Satange ◽  
Shun-Ching Wang ◽  
Jing-Yi Zeng ◽  
Yih-Chern Horng ◽  
...  

Abstract The use of a small molecule compound to reduce toxic repeat RNA transcripts or their translated aberrant proteins to target repeat-expanded RNA/DNA with a G4C2 motif is a promising strategy to treat C9orf72-linked disorders. In this study, the crystal structures of DNA and RNA–DNA hybrid duplexes with the -GGGCCG- region as a G4C2 repeat motif were solved. Unusual groove widening and sharper bending of the G4C2 DNA duplex A-DNA conformation with B-form characteristics inside was observed. The G4C2 RNA–DNA hybrid duplex adopts a more typical rigid A form structure. Detailed structural analysis revealed that the G4C2 repeat motif of the DNA duplex exhibits a hydration shell and greater flexibility and serves as a ‘hot-spot’ for binding of the anthracene-based nickel complex, NiII(Chro)2 (Chro = Chromomycin A3). In addition to the original GGCC recognition site, NiII(Chro)2 has extended specificity and binds the flanked G:C base pairs of the GGCC core, resulting in minor groove contraction and straightening of the DNA backbone. We have also shown that Chro-metal complexes inhibit neuronal toxicity and suppresses locomotor deficits in a Drosophila model of C9orf72-associated ALS. The approach represents a new direction for drug discovery against ALS and FTD diseases by targeting G4C2 repeat motif DNA.


2008 ◽  
Vol 37 (3) ◽  
pp. 340-341 ◽  
Author(s):  
Naoto Maru ◽  
Koh-ichiroh Shohda ◽  
Tadashi Sugawara
Keyword(s):  
Triton X ◽  

Sign in / Sign up

Export Citation Format

Share Document