Conformational Properties of Sodium Polystyrenesulfonate in Water: Insights from a Coarse-Grained Model with Explicit Solvent

2015 ◽  
Vol 119 (34) ◽  
pp. 11010-11018 ◽  
Author(s):  
Sriteja Mantha ◽  
Arun Yethiraj
2021 ◽  
Vol 8 ◽  
Author(s):  
Chengwei Zhang ◽  
Jing Huang

The organization of genomes in space and time dimension plays an important role in gene expression and regulation. Chromatin folding occurs in a dynamic, structured way that is subject to biophysical rules and biological processes. Nucleosomes are the basic unit of chromatin in living cells, and here we report on the effective interactions between two nucleosomes in physiological conditions using explicit-solvent all-atom simulations. Free energy landscapes derived from umbrella sampling simulations agree well with recent experimental and simulation results. Our simulations reveal the atomistic details of the interactions between nucleosomes in solution and can be used for constructing the coarse-grained model for chromatin in a bottom-up manner.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Vincent K. Shen ◽  
Jason K. Cheung ◽  
Jeffrey R. Errington ◽  
Thomas M. Truskett

Proteins aggregate and precipitate from high concentration solutions in a wide variety of problems of natural and technological interest. Consequently, there is a broad interest in developing new ways to model the thermodynamic and kinetic aspects of protein stability in these crowded cellular or solution environments. We use a coarse-grained modeling approach to study the effects of different crowding agents on the conformational equilibria of proteins and the thermodynamic phase behavior of their solutions. At low to moderate protein concentrations, we find that crowding species can either stabilize or destabilize the native state, depending on the strength of their attractive interaction with the proteins. At high protein concentrations, crowders tend to stabilize the native state due to excluded volume effects, irrespective of the strength of the crowder-protein attraction. Crowding agents reduce the tendency of protein solutions to undergo a liquid-liquid phase separation driven by strong protein-protein attractions. The aforementioned equilibrium trends represent, to our knowledge, the first simulation predictions for how the properties of crowding species impact the global thermodynamic stability of proteins and their solutions.


Sign in / Sign up

Export Citation Format

Share Document