scholarly journals The Excess Chemical Potential of Water at the Interface with a Protein from End Point Simulations

2018 ◽  
Vol 122 (17) ◽  
pp. 4700-4707 ◽  
Author(s):  
Bin W. Zhang ◽  
Di Cui ◽  
Nobuyuki Matubayasi ◽  
Ronald M. Levy
2018 ◽  
Vol 172 ◽  
pp. 02003
Author(s):  
Alejandro Ayala ◽  
J. A. Flores ◽  
L. A. Hernández ◽  
S. Hernández-Ortiz

We use the linear sigma model coupled to quarks to compute the effective potential beyond the mean field approximation, including the contribution of the ring diagrams at finite temperature and baryon density. We determine the model couplings and use them to study the phase diagram in the baryon chemical potential-temperature plane and to locate the Critical End Point.


RSC Advances ◽  
2021 ◽  
Vol 11 (47) ◽  
pp. 29394-29406
Author(s):  
Marco V. Velarde-Salcedo ◽  
Joel Sánchez-Badillo ◽  
Marco Gallo ◽  
Jorge López-Lemus

Excess chemical potential of thiophene in imidazolium-based ionic liquids [C4mim][BF4], [C4mim][Cl], [C4mim][Br], and [C4mim][CH3COO] determined by molecular simulations.


2017 ◽  
Vol 32 (13) ◽  
pp. 1750067 ◽  
Author(s):  
Zan Pan ◽  
Zhu-Fang Cui ◽  
Chao-Hsi Chang ◽  
Hong-Shi Zong

To investigate the finite-volume effects on the chiral symmetry restoration and the deconfinement transition for a quantum chromodynamics (QCD) system with [Formula: see text] (two quark flavors), we apply the Polyakov-loop extended Nambu–Jona-Lasinio model by introducing a chiral chemical potential [Formula: see text] artificially. The final numerical results indicate that the introduced chiral chemical potential does not change the critical exponents, but shifts the location of critical end point (CEP) significantly; the ratios for the chiral chemical potentials and temperatures at CEP, [Formula: see text] and [Formula: see text], are significantly affected by the system size [Formula: see text]. The behavior is that [Formula: see text] increases slowly with [Formula: see text] when [Formula: see text] is “large” and [Formula: see text] decreases first and then increases with [Formula: see text] when [Formula: see text] is “small.” It is also found that for a fixed [Formula: see text], there is a [Formula: see text], where the critical end point vanishes and the whole phase diagram becomes a crossover when [Formula: see text]. Therefore, we suggest that for the heavy-ion collision experiments, which is to study the possible location of CEP, the finite-volume behavior should be taken into account.


2019 ◽  
Vol 64 (8) ◽  
pp. 665
Author(s):  
A. Ayala ◽  
M. Hentschinski ◽  
L. A. Hernández ◽  
M. Loewe ◽  
R. Zamora

Effects of the partial thermalization during the chiral symmetry restoration at the finite temperature and quark chemical potential are considered for the position of the critical end point in an effective description of the QCD phase diagram. We find that these effects cause the critical end point to be displaced toward larger values of the temperature and lower values of the quark chemical potential, as compared to the case where the system can be regarded as completely thermalized. These effects may be important for relativistic heavy ion collisions, where the number of subsystems making up the whole interaction volume can be linked to the finite number of participants in the reaction.


2017 ◽  
Vol 32 (26) ◽  
pp. 1750162 ◽  
Author(s):  
F. Márquez ◽  
R. Zamora

In this paper, we explore the critical end point in the [Formula: see text] phase diagram of a thermomagnetic nonlocal Nambu–Jona-Lasinio model in the weak field limit. We work with the Gaussian regulator, and find that a crossover takes place at [Formula: see text], [Formula: see text]. The crossover turns to a first-order phase transition as the chemical potential or the magnetic field increases. The critical end point of the phase diagram occurs at a higher temperature and lower chemical potential as the magnetic field increases. This result is in accordance to similar findings in other effective models. We also find that there is a critical magnetic field, for which a first-order phase transition takes place even at [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document