scholarly journals Finite-volume effects on phase transition in the Polyakov-loop extended Nambu–Jona-Lasinio model with a chiral chemical potential

2017 ◽  
Vol 32 (13) ◽  
pp. 1750067 ◽  
Author(s):  
Zan Pan ◽  
Zhu-Fang Cui ◽  
Chao-Hsi Chang ◽  
Hong-Shi Zong

To investigate the finite-volume effects on the chiral symmetry restoration and the deconfinement transition for a quantum chromodynamics (QCD) system with [Formula: see text] (two quark flavors), we apply the Polyakov-loop extended Nambu–Jona-Lasinio model by introducing a chiral chemical potential [Formula: see text] artificially. The final numerical results indicate that the introduced chiral chemical potential does not change the critical exponents, but shifts the location of critical end point (CEP) significantly; the ratios for the chiral chemical potentials and temperatures at CEP, [Formula: see text] and [Formula: see text], are significantly affected by the system size [Formula: see text]. The behavior is that [Formula: see text] increases slowly with [Formula: see text] when [Formula: see text] is “large” and [Formula: see text] decreases first and then increases with [Formula: see text] when [Formula: see text] is “small.” It is also found that for a fixed [Formula: see text], there is a [Formula: see text], where the critical end point vanishes and the whole phase diagram becomes a crossover when [Formula: see text]. Therefore, we suggest that for the heavy-ion collision experiments, which is to study the possible location of CEP, the finite-volume behavior should be taken into account.

2015 ◽  
Vol 30 (26) ◽  
pp. 1550130
Author(s):  
Minati Biswal ◽  
Sanatan Digal ◽  
P. S. Saumia

We study the free energy per baryon using canonical formalism in the Polyakov loop Nambu–Jona-Lasinio model with imaginary chemical potential. We find that the free energy decreases rapidly with temperature around the transition temperature. This result coupled with the heavy-ion collision geometry leads to the creation of a free energy well for the baryons. We study the time evolution of this free energy well using hydrodynamic simulations and discuss the implications of this free energy well on the dynamics of the baryons.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guruprasad Kadam ◽  
Swapnali Pawar

We study the equation of state (EoS) of hot and dense hadron gas by incorporating the excluded volume corrections into the ideal hadron resonance gas (HRG) model. The total hadron mass spectrum of the model is the sum of the discrete mass spectrum consisting of all the experimentally known hadrons and the exponentially rising continuous Hagedorn states. We confront the EoS of the model with lattice quantum chromodynamics (LQCD) results at finite baryon chemical potential. We find that this modified HRG model reproduces the LQCD results up to T=160 MeV at zero as well as finite baryon chemical potential. We further estimate the shear viscosity within the ambit of this model in the context of heavy-ion collision experiments.


2007 ◽  
Vol 16 (07n08) ◽  
pp. 2229-2234
Author(s):  
LUDWIK TURKO

Finite volume corrections to higher moments are important observable quantities. They make possible to differentiate between different statistical ensembles even in the thermodynamic limit. It is shown that this property is a universal one. The classical grand canonical distribution is compared to the canonical distribution in the rigorous procedure of approaching the thermodynamic limit.


2006 ◽  
Vol 21 (07) ◽  
pp. 559-569 ◽  
Author(s):  
TOMÁŠ BRAUNER

We construct the chiral perturbation theory for two-color QCD with two quark flavors as an effective theory on the SO(6)/SO(5) coset space. This formulation turns out to be particularly useful for extracting the physical content of the theory when finite baryon and isospin chemical potentials are introduced, and Bose–Einstein condensation sets on.


2020 ◽  
Vol 229 (22-23) ◽  
pp. 3517-3536
Author(s):  
D. Blaschke ◽  
A. V. Friesen ◽  
Yu. L. Kalinovsky ◽  
A. Radzhabov

AbstractWithin the three-flavor PNJL and EPNJL chiral quark models we have obtained pseudoscalar meson properties in quark matter at finite temperature T and baryochemical potential μB. We compare the meson pole (Breit-Wigner) approximation with the Beth-Uhlenbeck (BU) approach that takes into account the continuum of quark-antiquark scattering states when determining the partial densities of pions and kaons. We evaluate the kaon-to-pion ratios along the (pseudo-)critical line in the T − μB plane as a proxy for the chemical freezeout line, whereby the variable x = T∕μB is introduced that corresponds to the conserved entropy per baryon as initial condition for the heavy-ion collision experiments. We present a comparison with the experimental pattern of kaon-to-pion ratios within the BU approach and using x-dependent pion and strange quark potentials. A sharp “horn” effect in the energy dependence K+∕π+ ratio is explained by the enhanced pion production at energies above √sNN=8 GeV, when the system enters the regime of meson dominance. This effect is in line with the enhancement of low-momentum pion spectra that is discussed as a precursor of the pion Bose condensation and entails the occurrence of a nonequilibrium pion chemical potential of the order of the pion mass. We elucidate that the horn effect is not related to the existence of a critical endpoint in the QCD phase diagram.


2019 ◽  
Vol 64 (8) ◽  
pp. 665
Author(s):  
A. Ayala ◽  
M. Hentschinski ◽  
L. A. Hernández ◽  
M. Loewe ◽  
R. Zamora

Effects of the partial thermalization during the chiral symmetry restoration at the finite temperature and quark chemical potential are considered for the position of the critical end point in an effective description of the QCD phase diagram. We find that these effects cause the critical end point to be displaced toward larger values of the temperature and lower values of the quark chemical potential, as compared to the case where the system can be regarded as completely thermalized. These effects may be important for relativistic heavy ion collisions, where the number of subsystems making up the whole interaction volume can be linked to the finite number of participants in the reaction.


2018 ◽  
Vol 175 ◽  
pp. 07036
Author(s):  
Jana N. Guenther ◽  
Szabolcs Borsányi ◽  
Zoltan Fodor ◽  
Sandor D. Katz ◽  
Attila Pásztor ◽  
...  

When comparing lattice calculation to experimental data from heavy ion collision experiments, the higher order fluctuations of conserved charges are important observables. An efficient way to study these fluctuations is to determine them from simulations at imaginary chemical potential. In this talk we present results up to the six order derivative in μB (with up to eighth order included in the fit), calculated on a 483 × 12 lattice with staggered fermions using different values of μB while μS = μQ = 0.


2018 ◽  
Vol 191 ◽  
pp. 05015 ◽  
Author(s):  
Tamaz Khunjua ◽  
Konstantin Klimenko ◽  
Roman Zhokhov

Isospin asymmetry is the well-known property of dense quark matter, which exists in the compact stars and is produced in heavy ion collisions. On the other hand, the chiral imbalance between left- and right- handed quarks is another highly anticipated phenomenon that could occur in the dense quark matter. To investigate quark matter under these conditions, we take into account baryon – μB, isospin – μI and chiral isospin – μI5 chemical potentials and study QCD phase portrait using NJL4 model generalized to two massive quarks that could condense into the pion condensation. We have shown that the chiral isospin chemical potential μI5 generates pion condensation in isospin asymmetric quark matter. Also, we have investigated discrete symmetry (duality) between chiral and pion condensates in the case of massless quarks, which stay relatively instructive even if the quarks have bare mass. To describe hot dense quark matter, in addition to the above-mentioned chemical potentials, we introduce non-zero temperatures into consideration.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Wei-jie Fu ◽  
Jan M. Pawlowski ◽  
Fabian Rennecke

Since the incident nuclei in heavy-ion collisions do not carry strangeness, the global net strangeness of the detected hadrons has to vanish. We investigate the impact of strangeness neutrality on the phase structure and thermodynamics of QCD at finite baryon and strangeness chemical potential. To this end, we study the low-energy sector of QCD within a Polyakov loop enhanced quark-meson effective theory with 2+1 dynamical quark flavors. Non-perturbative quantum, thermal, and density fluctuations are taken into account with the functional renormalization group. We show that the impact of strangeness neutrality on thermodynamic quantities such as the equation of state is sizable.


2007 ◽  
Vol 16 (07n08) ◽  
pp. 2166-2173 ◽  
Author(s):  
◽  
TAKAO SAKAGUCHI

PHENIX has measured high transverse momentum (pT) identified hadrons in different collision species and energies in the last five RHIC runs. The systematic study of the high PT hadron production provides an idea on interaction of hard scattered partons and the matter created in relativistic heavy ion collision. The η/π0 ratio is measured in Au + Au collisions, which gives a hint on the system thermalization and particle production. A future measurement of hadron and photon measurement is discussed.


Sign in / Sign up

Export Citation Format

Share Document