scholarly journals Effect of Catalyst Distribution on Spherical Bubble Swimmer Trajectories

2015 ◽  
Vol 119 (27) ◽  
pp. 15339-15348 ◽  
Author(s):  
David A. Gregory ◽  
Andrew I. Campbell ◽  
Stephen J. Ebbens
Author(s):  
P. J. Goodhew

Cavity nucleation and growth at grain and phase boundaries is of concern because it can lead to failure during creep and can lead to embrittlement as a result of radiation damage. Two major types of cavity are usually distinguished: The term bubble is applied to a cavity which contains gas at a pressure which is at least sufficient to support the surface tension (2g/r for a spherical bubble of radius r and surface energy g). The term void is generally applied to any cavity which contains less gas than this, but is not necessarily empty of gas. A void would therefore tend to shrink in the absence of any imposed driving force for growth, whereas a bubble would be stable or would tend to grow. It is widely considered that cavity nucleation always requires the presence of one or more gas atoms. However since it is extremely difficult to prepare experimental materials with a gas impurity concentration lower than their eventual cavity concentration there is little to be gained by debating this point.


Author(s):  
Buyan-Ulzii Battulga ◽  
Tungalagtamir Bold ◽  
Enkhsaruul Byambajav

AbstractNi based catalysts supported on γ-Al2O3 that was unpromoted (Ni/γAl2O3) or promoted (Ni–Fe/γAl2O3, Ni–Co/γAl2O3, and Ni–Fe–Co/γAl2O3) were prepared using by the impregnation – co-precipitation method. Their catalytic performances for CO methanation were studied at 3 atm with a weight hourly space velocity (WHSV) of 3000 ml/g/h of syngas with a molar ratio of H2/CO = 3 and in the temperature range between 130 and 350 °C. All promoters could improve nickel distribution, and decreased its particle sizes. It was found that the Ni–Co/γAl2O3 catalyst showed the highest catalytic performance for CO methanation in a low temperature range (<250 °C). The temperatures for the 20% CO conversion over Ni–Co/γAl2O3, Ni–Fe/γAl2O3, Ni–Fe–Co/γAl2O3 and Ni/γAl2O3 catalysts were 205, 253, 263 and 270 °C, respectively. The improved catalyst distribution by the addition of cobalt promoter caused the formation of β type nickel species which had an appropriate interacting strength with alumina support in the Ni–Co/γAl2O3. Though an addition of iron promoter improved catalyst distribution, the methane selectivity was lowered due to acceleration of both CO methanation and WGS reaction with the Ni–Fe/γAl2O3. Moreover, it was found that there was no synergetic effect from the binary Fe–Co promotors in the Ni–Fe–Co/γAl2O3 on catalytic activity for CO methanation.


Author(s):  
LiYong Zou ◽  
ZhiGang Zhai ◽  
JinHong Liu ◽  
YanPing Wang ◽  
CangLi Liu

1969 ◽  
Vol 35 (4) ◽  
pp. 711-719 ◽  
Author(s):  
Paul H. Leblond

General qualitative rules are derived for the behaviour of the volume of an ascending spherical bubble and of the gas pressure within it. Three modes of behaviour are discerned, corresponding to as many possible orderings of the relative influences of ascent velocity, gas leakage and surface tension on the volume and the pressure balance. These general results are nearly independent of the particular forms of the ascent velocity and gas exchange functions. Quantitative results are presented for the Stokes law régime.


1996 ◽  
Vol 8 (2) ◽  
pp. 310-321 ◽  
Author(s):  
R. Bel Fdhila ◽  
P. C. Duineveld

Physics ◽  
2019 ◽  
Vol 1 (3) ◽  
pp. 321-338 ◽  
Author(s):  
Frans R. Klinkhamer ◽  
Osvaldo P. Santillán ◽  
Grigory E. Volovik ◽  
Albert Zhou

We consider a finite-size spherical bubble with a nonequilibrium value of the q-field, where the bubble is immersed in an infinite vacuum with the constant equilibrium value q 0 for the q-field (this q 0 has already cancelled an initial cosmological constant). Numerical results are presented for the time evolution of such a q-bubble with gravity turned off and with gravity turned on. For small enough bubbles and a q-field energy scale sufficiently below the gravitational energy scale E Planck , the vacuum energy of the q-bubble is found to disperse completely. For large enough bubbles and a finite value of E Planck , the vacuum energy of the q-bubble disperses only partially and there occurs gravitational collapse near the bubble center.


Sign in / Sign up

Export Citation Format

Share Document