Formation of Two-Dimensional Crystals with Square Lattice Structure from the Liquid State

2016 ◽  
Vol 120 (32) ◽  
pp. 18340-18347 ◽  
Author(s):  
Vo Van Hoang ◽  
Nguyen Thanh Hieu
2013 ◽  
Vol 538 ◽  
pp. 201-204
Author(s):  
Shou Xiang Chen ◽  
Xiu Lun Yang ◽  
Xiang Feng Meng ◽  
Yu Rong Wang ◽  
Lin Hui Wang ◽  
...  

Plane-wave expansion method was employed to analyze the photonic band gap in two-dimensional silicon nitride photonic crystal. The effects of filling ratio and lattice structure type on the photonic band gap were studied. The results showed that two-dimensional dielectric cylinder type silicon nitride photonic crystal only has TE mode band gap, while, the air column type photonic crystal has complete band gap for TE and TM modes simultaneously. The distribution of band gap can be influenced by the filling ratio of dielectric materials and the lattice type. It is shown that the triangular lattice structure is much easier to form band gap than square lattice structure.


2011 ◽  
Vol 66 (5) ◽  
pp. 339-344
Author(s):  
Xianfeng Bao ◽  
Duanzheng Yao

The energy band structure and its characteristics of a two-dimensional metallic photonic crystal with square lattice structure have been studied by using the finite-difference time-domain (FDTD) algorithm. In order to determine the band structure accurately, the spatial distribution of the eigenfunction has been analyzed. By comparing the distribution of different wave vectors and of different energy band eigenmodes, an effective method to determine the band structure was found, which has been verified by the simulation results.


2020 ◽  
Vol 16 (3) ◽  
pp. 132
Author(s):  
Nguyen Hoang Giang ◽  
Nguyen Van Tung ◽  
Vo Van Hoang

Formation of two-dimensional (2D) Fe-C alloy with square lattice structure from the liquid state is studied via molecular dynamics (MD) simulation. The researchers find that the crystallization of 2D Fe-C alloy exhibits a first-order-like phase transition. Evolution of structural and thermodynamic properties upon cooling from the melt of the model is investigated in details. Structural properties of the Fe50C50 model are investigated via the radial distribution function (RDF), coordination number, interatomic distance, and bond-angle distributions. The researchers find that Fe-Fe distance is 2.62Å, which is close to the value of DFT calculations and experiments. In addition, various types of structural defects are studied such as vacancies of different shapes and rings of several sizes clearly using the visualization’s software Visual Molecular Dynamics (VMD). Moreover, it can be proposed that the 2D Fe-C material would have many important applications in electronics and mechanic devices.


2015 ◽  
Vol 36 (2) ◽  
Author(s):  
Hamed Alipour-Banaei ◽  
Somaye Serajmohammadi ◽  
Farhad Mehdizadeh ◽  
Alireza Andalib

AbstractIn this paper we proposed a new structure of two-dimensional photonic crystals with rectangular lattice. After deducing the primitive lattice vectors and first Brillouin zone of the structures, we studied the band gap properties of horizontal and vertical rectangular lattice structures and compared them with conventional square lattice structure. The most excellent characteristic of these structures is their joint band gap regions, which make them suitable for designing polarization-independent devices. The other advantage of these structures is having band gaps at higher normalized frequencies.


Author(s):  
Xin Qiao ◽  
Xiaodong Lv ◽  
Yinan Dong ◽  
Yanping Yang ◽  
Fengyu Li

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1392
Author(s):  
David Gallina ◽  
G. M. Pastor

Structural disorder has been shown to be responsible for profound changes of the interaction-energy landscapes and collective dynamics of two-dimensional (2D) magnetic nanostructures. Weakly-disordered 2D ensembles have a few particularly stable magnetic configurations with large basins of attraction from which the higher-energy metastable configurations are separated by only small downward barriers. In contrast, strongly-disordered ensembles have rough energy landscapes with a large number of low-energy local minima separated by relatively large energy barriers. Consequently, the former show good-structure-seeker behavior with an unhindered relaxation dynamics that is funnelled towards the global minimum, whereas the latter show a time evolution involving multiple time scales and trapping which is reminiscent of glasses. Although these general trends have been clearly established, a detailed assessment of the extent of these effects in specific nanostructure realizations remains elusive. The present study quantifies the disorder-induced changes in the interaction-energy landscape of two-dimensional dipole-coupled magnetic nanoparticles as a function of the magnetic configuration of the ensembles. Representative examples of weakly-disordered square-lattice arrangements, showing good structure-seeker behavior, and of strongly-disordered arrangements, showing spin-glass-like behavior, are considered. The topology of the kinetic networks of metastable magnetic configurations is analyzed. The consequences of disorder on the morphology of the interaction-energy landscapes are revealed by contrasting the corresponding disconnectivity graphs. The correlations between the characteristics of the energy landscapes and the Markovian dynamics of the various magnetic nanostructures are quantified by calculating the field-free relaxation time evolution after either magnetic saturation or thermal quenching and by comparing them with the corresponding averages over a large number of structural arrangements. Common trends and system-specific features are identified and discussed.


2005 ◽  
Vol 74 (6) ◽  
pp. 1702-1705 ◽  
Author(s):  
H. Kageyama ◽  
T. Kitano ◽  
N. Oba ◽  
M. Nishi ◽  
S. Nagai ◽  
...  

2004 ◽  
Vol 15 (10) ◽  
pp. 1425-1438 ◽  
Author(s):  
A. SOLAK ◽  
B. KUTLU

The two-dimensional BEG model with nearest neighbor bilinear and positive biquadratic interaction is simulated on a cellular automaton, which is based on the Creutz cellular automaton for square lattice. Phase diagrams characterizing phase transitions of the model are presented for comparison with those obtained from other calculations. We confirm the existence of the tricritical points over the phase boundary for D/K>0. The values of static critical exponents (α, β, γ and ν) are estimated within the framework of the finite size scaling theory along D/K=-1 and 1 lines. The results are compatible with the universal Ising critical behavior except the points over phase boundary.


1992 ◽  
Vol 296 ◽  
Author(s):  
Robert S. Sinkovits ◽  
Lee Phillips ◽  
Elaine S. Oran ◽  
Jay P. Boris

AbstractThe interactions of shocks with defects in two-dimensional square and hexagonal lattices of particles interacting through Lennard-Jones potentials are studied using molecular dynamics. In perfect lattices at zero temperature, shocks directed along one of the principal axes propagate through the crystal causing no permanent disruption. Vacancies, interstitials, and to a lesser degree, massive defects are all effective at converting directed shock motion into thermalized two-dimensional motion. Measures of lattice disruption quantitatively describe the effects of the different defects. The square lattice is unstable at nonzero temperatures, as shown by its tendency upon impact to reorganize into the lower-energy hexagonal state. This transition also occurs in the disordered region associated with the shock-defect interaction. The hexagonal lattice can be made arbitrarily stable even for shock-vacancy interactions through appropriate choice of potential parameters. In reactive crystals, these defect sites may be responsible for the onset of detonation. All calculations are performed using a program optimized for the massively parallel Connection Machine.


Sign in / Sign up

Export Citation Format

Share Document