Core–Shell Structure of Palladium Hydride Nanoparticles Revealed by Combined X-ray Absorption Spectroscopy and X-ray Diffraction

2017 ◽  
Vol 121 (33) ◽  
pp. 18202-18213 ◽  
Author(s):  
Aram L. Bugaev ◽  
Alexander A. Guda ◽  
Kirill A. Lomachenko ◽  
Viktor V. Shapovalov ◽  
Andrea Lazzarini ◽  
...  
2009 ◽  
Vol 79-82 ◽  
pp. 1643-1646 ◽  
Author(s):  
Qing Lin ◽  
Yan Bao Li ◽  
Xiang Hui Lan ◽  
Chun Hua Lu ◽  
Zhong Zi Xu

The amorphous calcium phosphate (ACP)/tricalcium silicate (Ca3SiO5, C3S) composite powders were synthesized in this paper. The exothermal behavior of C3S determined by isothermal conduction calorimetry indicated that the ACP could be synthesis by chemical precipitation method during the induction period (stage II) of C3S. The composite powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results indicated that nanosized ACP particles deposited on the surface of C3S particles to form core-shell structure at pH=10.5, and the nCa/nP of ACP could be controlled between 1.0 and 1.5. The core-shell structure is stable after sintered at 500 oC for 3 h to remove the β-cyclodextrin (β-CD). As compared with the irregular C3S particles (1~5 μm), the composite powders particles are spherical with a diameter of 40~150 μm. Therefore, to obtain the smaller size of composite powders, it is expected to avoid the aggregate of C3S particles in the aqueous solution by addition of dispersant. As compared with C3S, the composite powders may contribute better injectability, strength and biocompatibility.


2014 ◽  
Vol 936 ◽  
pp. 359-363
Author(s):  
Yan Li Wu ◽  
Min Liao ◽  
Hai Xin Ding ◽  
Ru Chun Yang ◽  
Dan Dan Xiong ◽  
...  

The SiO2/NaGdF4:Eu3+ core/shell composite was prepared by a template-mediated method, making monodispersed SiO2 as core and NaGdF4:Eu colloids as shell, the morphology and the core-shell structure of the resulting particles were analyzed by SEM,X-ray diffraction, and the photo-luminescence and magnetic properties of the microspheres were investigated too. The results shows the composite have great potential to be used as homogeneous magnetic/optical bifunctional material.


ACS Nano ◽  
2014 ◽  
Vol 8 (3) ◽  
pp. 2639-2648 ◽  
Author(s):  
Loredana Protesescu ◽  
Aaron J. Rossini ◽  
Dominik Kriegner ◽  
Maxence Valla ◽  
Antoine de Kergommeaux ◽  
...  

2019 ◽  
Vol 13 (02) ◽  
pp. 2050001 ◽  
Author(s):  
Huiping Shao ◽  
Luhui Wang ◽  
Tao Lin ◽  
Yumeng Zhang ◽  
Zhinan Zhang

Fe3O4@chitosan (CS)@Gefitinib (GFTN) core-shell structure composite magnetic nanoparticles (NPs) were prepared by chemical coprecipitation method in this study. In addition, protamine was doped in Fe3O4 cores to prepare Fe3O4@protamine@CS@GFTN core-shell structure composite NPs, in order to increase the loading of GFTN in composite NPs. They were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and spectrophotometer. The results show that the average size of Fe3O4@CS@GFTN and Fe3O4@protamine@CS@GFTN composite NPs is approximately 19 and 21[Formula: see text]nm, respectively. The saturation magnetizations of composite magnetic NPs and corresponding magnetic fluids are 57.20, 20.79, 59.58 and 19.75[Formula: see text]emu/g, respectively. The loading of GFTN in composite NPs was measured by a spectrophotometer to be about 13.5% and 27.6%, respectively. The addition of protamine increased the loading of GFTN two times, indicating that it will play an important role in the management of lung diseases.


2010 ◽  
Vol 25 (4) ◽  
pp. 711-717 ◽  
Author(s):  
Wei-Qiang Han ◽  
Dong Su ◽  
Michael Murphy ◽  
Matthew Ward ◽  
Tsun-Kong Sham ◽  
...  

PtPd@Pt core-shell ultrathin nanowires were prepared using a one-step phase-transfer approach. The diameters of the nanowires range from 2 to 3 nm, and their lengths are up to hundreds of nanometers. Line scanning electron energy loss spectra showed that PtPd bimetallic nanowires have a core-shell structure, with a PtPd alloy core and a Pt monolayer shell. X-ray absorption near edge structure (XANES) spectra reveal that a strong Pt-Pd interaction exists in this nanowire system in that there is PtPd alloying and/or interfacial interaction. Extended x-ray absorption fine structures (EXAFS) further confirms the PtPd@Pt core-shell structure. The bimetallic nanowires were determined to be face-centered cubic structures. The long-chain organic molecules of n-dodecyl trimethylammonium bromide and octadecylamine, used as surfactants during synthesis, were clearly observed using aberration-corrected TEM operated at 80 KV. The interaction of Pt and surfactants was also revealed by EXAFS.


2013 ◽  
Vol 652-654 ◽  
pp. 683-686
Author(s):  
An Dong Yuan ◽  
Yue Lu Zhang ◽  
Wei Guang Yang ◽  
Ji Rong Li ◽  
Yang Liao ◽  
...  

ZnO@ZnS nano-array core-shell structure was synthesized through a solution method using a thioacetamide (TAA) solution in deionized water. The as-synthesized ZnO nano-array and TAA solution were employed to supply zinc and sulfur ions to form the ZnO@ZnS core-shell structures. The properties of the structure were characterized by X-ray diffraction (XRD), Raman spectrum, scanning electron microscopy (SEM) and UV-Vis spectra. The results indicate that ZnO nano-array was coated with ZnS particles. The concentration of TAA solution can affect the diameter, surface roughness and optical properties of the ZnO@ZnS nano-array core-shell structures.


CrystEngComm ◽  
2020 ◽  
Vol 22 (30) ◽  
pp. 5031-5039
Author(s):  
Armin Hoell ◽  
Vikram Singh Raghuwanshi ◽  
Christian Bocker ◽  
Andreas Herrmann ◽  
Christian Rüssel ◽  
...  

Glasses with the mol% compositions 1.88 Na2O·15.04 K2O·7.52 Al2O3·69.56 SiO2·6.00 BaF2 and 1.88 Na2O·15.03 K2O·7.52 Al2O3·69.52 SiO2·6.00 BaF2·0.05 SmF3 were studied using X-ray diffraction, transmission electron microscopy, and anomalous small-angle X-ray scattering.


2011 ◽  
Vol 282-283 ◽  
pp. 354-358 ◽  
Author(s):  
Lu Lu Chen ◽  
Hong Yan Ding ◽  
Yue Zhang ◽  
Guang Hong Zhou

Conducting attapulgite/titania/polyaniline/ (ATP/TiO2/PANI) core-shell nanocomposites (CSNs) were synthesized via oxidative polymerization of aniline after the surface modification of the ATP carried with TiO2nanoparticles. The structure and morphology of the ATP/TiO2/PANI CSNs were characterized by X-ray diffraction, scanning electron microscopy, and fourier transform infrared. The thermal stability of the ATP/TiO2/PANI CSNs was also investigated by thermal analyzer. The results show that the ATP/TiO2/PANI CSNs display “capsule like” core-shell structure, of which ranging in diameter of about 80 nm and length of about 250 nm. In addition, the ATP/TiO2/PANI CSNs present a higher degree of crystallization and better thermal stability. We believe that the excellent core-shell structure and better thermal stability should be prone to improve their other properties and enlarge their application.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Huijing Wei ◽  
Jing Zhou ◽  
Linjuan Zhang ◽  
Fang Wang ◽  
Jianqiang Wang ◽  
...  

Understanding the chemical and physical properties of core/shell nanocrystal quantum dots (QDs) is key for their use in light-emission applications. In this paper, a single-step injection-free scalable synthetic method is applied to prepare high-quality core/shell QDs with emission wavelengths of 544 nm, 601 nm, and 634 nm. X-ray absorption fine structure spectra are used to determine the core/shell structure of CdSe/ZnS quantum dots. Moreover, theoretical XANES spectra calculated by FEFF.8.20 are used to determine the structure of Se and S compounds. The QD samples displayed nearly spherical shapes with diameters of approximately 3.4 ± 0.5 nm (634 nm), 4.5 ± 0.4 nm (601 nm), and 5.5 ± 0.5 nm (544 nm). With XANES results and MS calculations, it is indicated that sphalerite ZnS capped with organic sulfur ligands should be the shell structure. Wurtzite CdSe is the main core structure with a Cd-Se bond length of 2.3 Å without phase shift. This means that different emission wavelengths are only due to the crystal size with single-step injection-free synthesis. Therefore, single-step injection-free synthesis could generate a nearly ideal core/shell structure of CdSe/ZnS QDs capped with an organic sulfur ligand.


Sign in / Sign up

Export Citation Format

Share Document