Phase Transition Dominated High-Rate Performances of the High Voltage LiNi0.5Mn1.5O4 Cathode: Improvement on Structure Evolution and Ionic Diffusivity by Chromium Doping

2018 ◽  
Vol 122 (44) ◽  
pp. 25229-25236 ◽  
Author(s):  
Jiawen Li ◽  
Hailong Wang ◽  
Wenhao Dong ◽  
Zhongqi Shi ◽  
Wenqi Xie ◽  
...  
2019 ◽  
Vol 7 (9) ◽  
pp. 4705-4713 ◽  
Author(s):  
Peiyu Hou ◽  
Feng Li ◽  
Yangyang Wang ◽  
Jiangmei Yin ◽  
Xijin Xu

A nanoscale cobalt gradient substitution is introduced to suppress the P2–O2 phase transition and improve the Na+ kinetics of high-voltage P2-Na2/3[Ni1/3Mn2/3]O2 cathodes for sodium-ion batteries.


2003 ◽  
Vol 762 ◽  
Author(s):  
Guofu Hou ◽  
Xinhua Geng ◽  
Xiaodan Zhang ◽  
Ying Zhao ◽  
Junming Xue ◽  
...  

AbstractHigh rate deposition of high quality and stable hydrogenated amorphous silicon (a-Si:H) films were performed near the threshold of amorphous to microcrystalline phase transition using a very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) method. The effect of hydrogen dilution on optic-electronic and structural properties of these films was investigated by Fourier-transform infrared (FTIR) spectroscopy, Raman scattering and constant photocurrent method (CPM). Experiment showed that although the phase transition was much influenced by hydrogen dilution, it also strongly depended on substrate temperature, working pressure and plasma power. With optimized condition high quality and high stable a-Si:H films, which exhibit σph/σd of 4.4×106 and deposition rate of 28.8Å/s, have been obtained.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 746
Author(s):  
Meiling Hong ◽  
Lidong Dai ◽  
Haiying Hu ◽  
Xinyu Zhang

A series of investigations on the structural, vibrational, and electrical transport characterizations for Ga2Se3 were conducted up to 40.2 GPa under different hydrostatic environments by virtue of Raman scattering, electrical conductivity, high-resolution transmission electron microscopy, and atomic force microscopy. Upon compression, Ga2Se3 underwent a phase transformation from the zinc-blende to NaCl-type structure at 10.6 GPa under non-hydrostatic conditions, which was manifested by the disappearance of an A mode and the noticeable discontinuities in the pressure-dependent Raman full width at half maximum (FWHMs) and electrical conductivity. Further increasing the pressure to 18.8 GPa, the semiconductor-to-metal phase transition occurred in Ga2Se3, which was evidenced by the high-pressure variable-temperature electrical conductivity measurements. However, the higher structural transition pressure point of 13.2 GPa was detected for Ga2Se3 under hydrostatic conditions, which was possibly related to the protective influence of the pressure medium. Upon decompression, the phase transformation and metallization were found to be reversible but existed in the large pressure hysteresis effect under different hydrostatic environments. Systematic research on the high-pressure structural and electrical transport properties for Ga2Se3 would be helpful to further explore the crystal structure evolution and electrical transport properties for other A2B3-type compounds.


Author(s):  
Xiaoyu Zhang ◽  
Yuegang Qiu ◽  
Fangyuan Cheng ◽  
Peng Wei ◽  
Yuyu Li ◽  
...  

2018 ◽  
Vol 98 (14) ◽  
Author(s):  
Wencan Jin ◽  
Theanne Schiros ◽  
Yi Lin ◽  
Junzhang Ma ◽  
Rui Lou ◽  
...  

NANO ◽  
2018 ◽  
Vol 13 (09) ◽  
pp. 1850100 ◽  
Author(s):  
Rui-Feng Zhao ◽  
Bo Ren ◽  
Guo-Peng Zhang ◽  
Zhong-Xia Liu ◽  
Jian-Jian Zhang

The CrCuFeMnNi high entropy alloy (HEA) powder was synthesized by mechanical alloying. The effects of milling time and subsequent annealing on the structure evolution, thermostability and magnetic property were investigated. After 50[Formula: see text]h of milling, the CrCuFeMnNi HEA powder consisted of a major FCC phase and a small amount of BCC phase. The crystallite size and strain lattice of 50[Formula: see text]h-ball-milled CrCuFeMnNi HEA powder were 12[Formula: see text]nm and 1.02%, respectively. The powder exhibited refined morphology and excellent chemical homogeneity. The supersaturated solid solution structure of the as-milled HEA powder transformed into FCC1, FCC2, a small amount of BCC and [Formula: see text] phase in annealed state. Most of the BCC phase decomposed into FCC (mainly FCC2 phase) and [Formula: see text] phases, and the dynamic phase transition was almost in equilibrium at 900[Formula: see text]C. The saturated magnetization and coercivity force of the 50[Formula: see text]h-ball-milled CrCuFeMnNi HEA powder were respectively 16.1[Formula: see text]emu/g and 56.2[Formula: see text]Oe.


2020 ◽  
Vol 8 (6) ◽  
pp. 3222-3227 ◽  
Author(s):  
Xiao Wang ◽  
Baoqi Wang ◽  
Yuxin Tang ◽  
Ben Bin Xu ◽  
Chu Liang ◽  
...  

In situ polymerization is used to obtain PEDOT tightly coated MnHCF, inhibiting phase transition and Mn dissolution during cycling.


2016 ◽  
Vol 18 (14) ◽  
pp. 9658-9665 ◽  
Author(s):  
Rafael B. Araujo ◽  
Sudip Chakraborty ◽  
Prabeer Barpanda ◽  
Rajeev Ahuja

We have employed density functional theory to systematically investigate the crystal structure evolution, density of states and charge transfer with sodium ions insertion, and the corresponding average redox potential, for Na2M2(SO4)3 (M = Fe, Mn, Co and Ni).


2021 ◽  
Vol MA2021-01 (47) ◽  
pp. 1897-1897
Author(s):  
Keti Vezzu ◽  
Gioele Pagot ◽  
Enrico Negro ◽  
Vito Di Noto

Computation ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 27 ◽  
Author(s):  
Dina U. Abdullina ◽  
Elena A. Korznikova ◽  
Volodymyr I. Dubinko ◽  
Denis V. Laptev ◽  
Alexey A. Kudreyko ◽  
...  

Structure evolution and mechanical response of the carbon nanotube (CNT) bundle under lateral biaxial compression is investigated in plane strain conditions using the chain model. In this model, tensile and bending rigidity of CTN walls, and the van der Waals interactions between them are taken into account. Initially the bundle in cross section is a triangular lattice of circular zigzag CNTs. Under increasing strain control compression, several structure transformations are observed. Firstly, the second-order phase transition leads to the crystalline structure with doubled translational cell. Then the first-order phase transition takes place with the appearance of collapsed CNTs. Further compression results in increase of the fraction of collapsed CNTs at nearly constant compressive stress and eventually all CNTs collapse. It is found that the potential energy of the CNT bundle during deformation changes mainly due to bending of CNT walls, while the contribution from the walls tension-compression and from the van der Waals energies is considerably smaller.


Sign in / Sign up

Export Citation Format

Share Document