scholarly journals Relation between the Electronic Properties of Regioregular Donor–Acceptor Terpolymers and Their Binary Copolymers

2020 ◽  
Vol 124 (6) ◽  
pp. 3503-3516 ◽  
Author(s):  
Gaël H. L. Heintges ◽  
Andréanne Bolduc ◽  
Stefan C. J. Meskers ◽  
René A. J. Janssen
2019 ◽  
Author(s):  
Qi Yuan ◽  
Alejandro Santana-Bonilla ◽  
Martijn Zwijnenburg ◽  
Kim Jelfs

<p>The chemical space for novel electronic donor-acceptor oligomers with targeted properties was explored using deep generative models and transfer learning. A General Recurrent Neural Network model was trained from the ChEMBL database to generate chemically valid SMILES strings. The parameters of the General Recurrent Neural Network were fine-tuned via transfer learning using the electronic donor-acceptor database from the Computational Material Repository to generate novel donor-acceptor oligomers. Six different transfer learning models were developed with different subsets of the donor-acceptor database as training sets. We concluded that electronic properties such as HOMO-LUMO gaps and dipole moments of the training sets can be learned using the SMILES representation with deep generative models, and that the chemical space of the training sets can be efficiently explored. This approach identified approximately 1700 new molecules that have promising electronic properties (HOMO-LUMO gap <2 eV and dipole moment <2 Debye), 6-times more than in the original database. Amongst the molecular transformations, the deep generative model has learned how to produce novel molecules by trading off between selected atomic substitutions (such as halogenation or methylation) and molecular features such as the spatial extension of the oligomer. The method can be extended as a plausible source of new chemical combinations to effectively explore the chemical space for targeted properties.</p>


1988 ◽  
Vol 21 (6) ◽  
pp. 1888-1890 ◽  
Author(s):  
Toshiyuki Uryu ◽  
Haruki Ohkawa ◽  
Takashi Furuichi ◽  
Ryuichi Oshima

2018 ◽  
Vol 5 (11) ◽  
pp. 1748-1755 ◽  
Author(s):  
Angela Benito-Hernández ◽  
Mardia T. El-Sayed ◽  
Juan T. López Navarrete ◽  
M. Carmen Ruiz Delgado ◽  
Berta Gómez-Lor

A promising candidate for ambipolar charge transport: a disk-like platform, diazatruxenone, as a novel, compact and planar donor–acceptor molecule.


Author(s):  
Mohsen Doust Mohammadi ◽  
Idris H. Salih ◽  
Hewa Y. Abdullah

In this investigation, the feasibility of detecting the amantadine (AMD) molecule onto the outer surface of pristine fullerene (C[Formula: see text]), as well as C[Formula: see text]X ([Formula: see text], Ge, B, Al, Ga, N, P, and As) decorated structures, was carefully evaluated. For achieving this goal, a density functional theory level of study using the HSEH1PBE functional together with a 6-311G(d) basis set has been used. Subsequently, the B3LYP-D3, wB97XD and M062X functionals with a 6-311G(d) basis set were also employed to consider the single point energies. Natural bond orbital (NBO) and the quantum theory of atoms in molecules (QTAIM) were implemented using the B3LYP-D3/6-311G(d) method and the results were compatible with the electronic properties. In this regard, the total density of states (TDOSs), the Wiberg bond index (WBI), natural charge, natural electron configuration, donor–acceptor NBO interactions, and the second-order perturbation energies are performed to explore the nature of the intermolecular interactions. All of the energy calculations and population analyses denote that by adsorbing of the AMD molecule onto the surface of the considered nanostructures, the intermolecular interactions are of the type of strong physical adsorption. Among the doped fullerenes, Ge-doped structure has very high adsorption energy compared to other elements. Generally, it was revealed that the sensitivity of the adsorption will be increased when the AMD molecule interacts with the decorated fullerenes and decrease the HOMO–LUMO band gap; therefore, the change of electronic properties can be used to design suitable nanocarrier.


2019 ◽  
Vol 26 (2) ◽  
pp. 346-346
Author(s):  
Julia Merz ◽  
Maximilian Dietz ◽  
Yvonne Vonhausen ◽  
Frederik Wöber ◽  
Alexandra Friedrich ◽  
...  

2019 ◽  
Vol 824 ◽  
pp. 236-244
Author(s):  
Suppamat Makjan ◽  
Malinee Promkatkaew ◽  
Supa Hannongbua ◽  
Pornthip Boonsri

Generally, it is difficult to generate a high-performance pure blue emission organic light-emitting diode (OLED). That is because the intrinsically wide band-gap makes it hard to inject charges into the emitting layer in such devices. To solve the problem, carbazole derivatives have been widely used because they have more thermal stability, a good hole transporting property, more electron rich (p-type) material, and higher photoconductivity. In the present work, novel copolymers containing donor-acceptor-acceptor-donor (D-A-A-D) blue compounds used for OLEDs were investigated. The theory of the geometrical and electronic properties of N-ethylcarbazole (ECz) as donor molecule (D) coupled to a series of 6 acceptor molecules (A) for advanced OLEDs were investigated. The acceptors were thiazole (TZ), thiadiazole (TD), thienopyrazine (TPZ), thienothiadiazole (TTD), benzothiadiazole (BTD), and thiadiazolothienopyrazine (TDTP). The ground state structure of the copolymers were studied using Density Functional Theory (DFT) at B3LYP/6-31G(d) level. Molecular orbital analysis study indicated 3 investigated copolymers (ECz-diTZ-ECz, ECz-diTD-ECz, ECz-diBTD-ECz) have efficient bipolar charge transport properties for both electron and hole injection to the TiO2 conduction band (4.8 eV). In addition, the excited states electronic properties were calculated using Time-Dependent Density Functional Theory (TD-DFT) at the same level. Among these investigated copolymer ECz-diTZ-ECz and ECz-diTD-ECz showed the maximum absorption wavelengths (λabs) with blue emitting at 429 and 431 nm, respectively. The results suggested that selected D-A-A-D copolymers can improve the electron- and hole- transporting abilities of the devices. Therefore, the designed copolymers would be a promising material for future development of light-emitting diodes, electrochromic windows, photovoltaic cells, and photorefractive materials.


Sign in / Sign up

Export Citation Format

Share Document