Polymorphic Phase Formation of Liquid Crystals Distributed in Semicrystalline Polymers: An Indicator of Interlamellar and Interspherulitic Segregation

Author(s):  
Wenqing Xu ◽  
Ying Zheng ◽  
Wenhua Yuan ◽  
Yongzhong Bao ◽  
Guorong Shan ◽  
...  
2017 ◽  
Vol 5 (33) ◽  
pp. 8454-8468 ◽  
Author(s):  
Mohamed Alaasar ◽  
Silvio Poppe ◽  
Christoph Kerzig ◽  
Christoph Klopp ◽  
Alexey Eremin ◽  
...  

We explore the formation of polar smectic clusters and the effects of the chemical structure on the phase formation in novel hockey-stick liquid crystalline materials derived from 4-cyanoresorcinol as the central core unit.


Author(s):  
M. Locke ◽  
J. T. McMahon

The fat body of insects has always been compared functionally to the liver of vertebrates. Both synthesize and store glycogen and lipid and are concerned with the formation of blood proteins. The comparison becomes even more apt with the discovery of microbodies and the localization of urate oxidase and catalase in insect fat body.The microbodies are oval to spherical bodies about 1μ across with a depression and dense core on one side. The core is made of coiled tubules together with dense material close to the depressed membrane. The tubules may appear loose or densely packed but always intertwined like liquid crystals, never straight as in solid crystals (Fig. 1). When fat body is reacted with diaminobenzidine free base and H2O2 at pH 9.0 to determine the distribution of catalase, electron microscopy shows the enzyme in the matrix of the microbodies (Fig. 2). The reaction is abolished by 3-amino-1, 2, 4-triazole, a competitive inhibitor of catalase. The fat body is the only tissue which consistantly reacts positively for urate oxidase. The reaction product is sharply localized in granules of about the same size and distribution as the microbodies. The reaction is inhibited by 2, 6, 8-trichloropurine, a competitive inhibitor of urate oxidase.


Author(s):  
G. Lucadamo ◽  
K. Barmak ◽  
C. Michaelsen

The subject of reactive phase formation in multilayer thin films of varying periodicity has stimulated much research over the past few years. Recent studies have sought to understand the reactions that occur during the annealing of Ni/Al multilayers. Dark field imaging from transmission electron microscopy (TEM) studies in conjunction with in situ x-ray diffraction measurements, and calorimetry experiments (isothermal and constant heating rate), have yielded new insights into the sequence of phases that occur during annealing and the evolution of their microstructure.In this paper we report on reactive phase formation in sputter-deposited lNi:3Al multilayer thin films with a periodicity A (the combined thickness of an aluminum and nickel layer) from 2.5 to 320 nm. A cross-sectional TEM micrograph of an as-deposited film with a periodicity of 10 nm is shown in figure 1. This image shows diffraction contrast from the Ni grains and occasionally from the Al grains in their respective layers.


Sign in / Sign up

Export Citation Format

Share Document