Reconstitution of Fusion Proteins in Supported Lipid Bilayers for the Study of Cell Surface Receptor–Ligand Interactions in Cell–Cell Contact

Langmuir ◽  
2016 ◽  
Vol 32 (14) ◽  
pp. 3462-3469 ◽  
Author(s):  
R. Ghosh Moulick ◽  
D. Afanasenkau ◽  
S.-E. Choi ◽  
J. Albers ◽  
W. Lange ◽  
...  
2000 ◽  
Vol 7 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Eva J Gordon ◽  
Jason E Gestwicki ◽  
Laura E Strong ◽  
Laura L Kiessling

2020 ◽  
Author(s):  
Anna H. Lippert ◽  
Ivan B. Dimov ◽  
Alexander Winkel ◽  
James McColl ◽  
Jane Humphrey ◽  
...  

AbstractThe T-cell receptor (TCR) is thought to be triggered either by mechano-transduction or local tyrosine phosphatase exclusion at cell-cell contacts. However, the effects of the mechanical properties of activating surfaces have only been tested for late-stage T-cell activation, and phosphatase segregation has mostly been studied on glass-supported lipid bilayers that favor imaging but are orders-of-magnitude stiffer than typical cells. We developed a method for attaching lipid bilayers to polydimethylsiloxane polymer supports, producing ‘soft bilayers’ with physiological levels of mechanical resistance (Young’s modulus of 4 kPa). Comparisons of T-cell behavior on soft and glass-supported bilayers revealed that early calcium signaling is unaffected by substrate rigidity, implying that early steps in TCR triggering are not mechanosensitive. Robust phosphatase exclusion was observed on the soft bilayers, however, suggesting it likely occurs at cell-cell contacts. This work sets the stage for an imaging-based exploration of receptor signaling under conditions closely mimicking physiological cell-cell contact.


Soft Matter ◽  
2021 ◽  
Author(s):  
Long Li ◽  
Jie Gao ◽  
Yingfeng Shao ◽  
Fan Song ◽  
Jinglei Hu

The adhesion of cells to supported lipid bilayers (SLBs) has been widely used as model systems to study the receptor-ligand interactions that cause the membrane interface. The ligand-functionalized SLBs are...


Langmuir ◽  
2005 ◽  
Vol 21 (18) ◽  
pp. 8374-8384 ◽  
Author(s):  
G. M. Harbers ◽  
L. J. Gamble ◽  
E. F. Irwin ◽  
D. G. Castner ◽  
K. E. Healy

1995 ◽  
Vol 306 (1) ◽  
pp. 107-113 ◽  
Author(s):  
C P Petrou ◽  
A H Tashjian

We have examined the trafficking of the thyrotropin-releasing hormone receptor (TRHR) and its ligand, after TRHR-TRH internalization in rat pituitary GH4C1 cells. After rapid ligand-induced receptor sequestration, the cell surface receptor pool was replenished. Replenishment was insensitive to inhibition of protein synthesis and was dependent on the duration of internalization; therefore, the replenished receptors were not newly synthesized but recycled. The total amount of recycled receptors decreased with increasing internalization time, resulting in only partial replenishment of the cell-surface receptor pool after prolonged incubation with ligand. Thus, in addition to a receptor recycling pathway, a non-cycling route exists for TRHR sorting; this route became dominant with increasing internalization periods. TRHR entry into these pathways was not determined by the affinity of the receptor-ligand interaction, because the extent of receptor recycling was similar after TRH- and methyl-TRH (MeTRH)-induced internalization. Unlike results with the TRHR, the TRH recycling pool was not depleted by the noncycling pathway. After multiple rounds of [3H]MeTRH internalization, the amount of cell-associated radioactivity increased with increasing internalization time due to accumulation of the ligand or its metabolites in a non-cycling pathway, but the absolute amount of recycled ligand remained constant after short or long internalization times. The difference in the proportion of TRHR and MeTRH that were diverted into a noncycling pathway indicated intracellular dissociation of the internalized TRHR-TRH complex. Dissociation of the internalized TRHR-TRH complex was dependent on the acidic pH in an intracellular compartment. Although extracellular acidic pH did not enhance cell-surface receptor-ligand (RL) dissociation, bafilomycin A1 inhibited both receptor and ligand recycling. We conclude that the TRHR-TRH system is unique among recycling receptors because, after RL sequestration, the TRHR-TRH complex becomes dissociated intracellularly via a bafilomycin A1-sensitive, acidic pH-dependent mechanism, and both the unoccupied TRHR and TRH recycle disassociated from each other.


1985 ◽  
Vol 100 (1) ◽  
pp. 56-63 ◽  
Author(s):  
D Schubert ◽  
M LaCorbiere

Embryonic chick neural retina cells release glycoprotein complexes, termed adherons, into their culture medium. When absorbed onto the surface of petri dishes, neural retina adherons increase the initial rate of neural retina cell adhesion. In solution they increase the rate of cell-cell aggregation. Cell-cell and adheron-cell adhesions of cultured retina cells are selectively inhibited by heparan-sulfate glycosaminoglycan, but not by chondroitin sulfate or hyaluronic acid, suggesting that a heparan-sulfate proteoglycan may be involved in the adhesion process. We isolated a heparan-sulfate proteoglycan from the growth-conditioned medium of neural retina cells, and prepared an antiserum against it. Monovalent Fab' fragments of these antibodies completely inhibited cell-adheron adhesion, and partially blocked spontaneous cell-cell aggregation. An antigenically and structurally similar heparan-sulfate proteoglycan was isolated from the cell surface. This proteoglycan bound directly to adherons, and when absorbed to plastic, stimulated cell-substratum adhesion. These data suggest that a heparan-sulfate proteoglycan on the surface of chick neural retina cells acted as a receptor for adhesion-mediating glycoprotein complexes (adherons).


Sign in / Sign up

Export Citation Format

Share Document