Probing Three Distinct Crystal Polymorphs of Melt-Crystallized Polyamide 6 by an Integrated Fast Scanning Calorimetry Chip System

2021 ◽  
Author(s):  
Xiaoshi Zhang ◽  
Anne Gohn ◽  
Gamini Mendis ◽  
John F. Buzinkai ◽  
Steven J. Weigand ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 954
Author(s):  
Xavier Monnier ◽  
Sara Marina ◽  
Xabier Lopez de Pariza ◽  
Haritz Sardón ◽  
Jaime Martin ◽  
...  

The present work aims to provide insights on recent findings indicating the presence of multiple equilibration mechanisms in physical aging of glasses. To this aim, we have investigated a glass forming polyether, poly(1-4 cyclohexane di-methanol) (PCDM), by following the evolution of the enthalpic state during physical aging by fast scanning calorimetry (FSC). The main results of our study indicate that physical aging persists at temperatures way below the glass transition temperature and, in a narrow temperature range, is characterized by a two steps evolution of the enthalpic state. Altogether, our results indicate that the simple old-standing view of physical aging as triggered by the α relaxation does not hold true when aging is carried out deep in the glassy state.


2014 ◽  
Vol 30 (2) ◽  
pp. 242-247 ◽  
Author(s):  
Linfang Li ◽  
Bingge Zhao ◽  
Bin Yang ◽  
Quanliang Zhang ◽  
Qijie Zhai ◽  
...  

Abstract


2021 ◽  
Vol 11 (1-2) ◽  
pp. 1-72
Author(s):  
Christoph Schick ◽  
Timur A. Mukhametzyanov ◽  
Boris N. Solomonov

2019 ◽  
Vol 39 (2) ◽  
pp. 124-133 ◽  
Author(s):  
Bingxiao Liu ◽  
Guosheng Hu ◽  
Jingting Zhang ◽  
Zhongqiang Wang

AbstractStudy of the crystallization kinetics is particularly necessary for the analysis and design of processing operations, especially the non-isothermal crystallization behavior, which is due to the fact that most practical processing techniques are carried out under non-isothermal conditions. The non-isothermal crystallization behaviors of polyamide 6 (PA6) and PA6/high-density polyethylene/maleic anhydride/2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (PA6/HDPE/MAH/L-101) composites were investigated by differential scanning calorimetry (DSC). The crystallization kinetics under non-isothermal condition was analyzed by the Jeziorny and Mo equations, and the activation energy was determined by the Kissinger and Takhor methods. The crystal structure and morphology were analyzed by wide-angle X-ray diffraction (WXRD) and polarized optical microscopy (POM). The results indicate that PA6/HDPE/MAH/L-101 has higher crystallization temperature and crystallization rate, which is explained as due to its heterogeneous nuclei.


2008 ◽  
Vol 47-50 ◽  
pp. 21-24
Author(s):  
C. Rosales ◽  
V. Contreras ◽  
M. Matos ◽  
R. Perera ◽  
N. Villarreal ◽  
...  

Polypropylene/polyamide-6 and polypropylene/metallocene polyethylene blends containing 2.5 phr of organophilic modified montmorillonite were prepared in a twin-screw extruder followed by injection molding. In order to compare, blends without layered clay were also made. Styreneethylene- butylene-styrene copolymer and polypropylene grafted with anhydride maleic were used as compatibilizers in the ternary blends and in the PP nanocomposite preparation, respectively. The presence of tactoids, intercalated and exfoliated structures was observed by TEM in some of the samples containing layered clay and modified PP materials. Results showed that the compatibilized blends prepared without clay are tougher than those prepared with the nanocomposite of PP as the matrix phase and no significant changes in tensile moduli were observed between them. However, the binary blend with a nanocomposite of PP as matrix and metallocene polyethylene exhibited better tensile toughness and lower tensile modulus, than those prepared with a nanocomposite of PP and polyamide-6 as dispersed phase. These results are related to the degree of clay dispersion in the PP and to the type of morphology developed in the different blends. Differential scanning calorimetry (DSC) showed that blends with a finer and homogeneously dispersed morphology determined by SEM, the PA component exhibited fractionated crystallization exotherms in the temperature range of 159-185°C. Also, nucleation of the PP component by PA phase and/or the layered clay was observed in the blends with PA as dispersed phase.


Sign in / Sign up

Export Citation Format

Share Document