Modular Approach for the Synthesis of Bottlebrush Diblock Copolymers from Poly(Glycidyl Methacrylate)-block-Poly(Vinyldimethylazlactone) Backbones

2022 ◽  
Author(s):  
Bin Hu ◽  
Jan-Michael Carrillo ◽  
Liam Collins ◽  
Kevin S. Silmore ◽  
Jong Keum ◽  
...  
Author(s):  
S.D. Smith ◽  
R.J. Spontak ◽  
D.H. Melik ◽  
S.M. Buehler ◽  
K.M. Kerr ◽  
...  

When blended together, homopolymers A and B will normally macrophase-separate into relatively large (≫1 μm) A-rich and B-rich phases, between which exists poor interfacial adhesion, due to a low entropy of mixing. The size scale of phase separation in such a blend can be reduced, and the extent of interfacial A-B contact and entanglement enhanced, via addition of an emulsifying agent such as an AB diblock copolymer. Diblock copolymers consist of a long sequence of A monomers covalently bonded to a long sequence of B monomers. These materials are surface-active and decrease interfacial tension between immiscible phases much in the same way as do small-molecule surfactants. Previous studies have clearly demonstrated the utility of block copolymers in compatibilizing homopolymer blends and enhancing blend properties such as fracture toughness. It is now recognized that optimization of emulsified ternary blends relies upon design considerations such as sufficient block penetration into a macrophase (to avoid block slip) and prevention of a copolymer multilayer at the A-B interface (to avoid intralayer failure).


Author(s):  
David M. Anderson ◽  
Tomas Landh

First discovered in surfactant-water liquid crystalline systems, so-called ‘bicontinuous cubic phases’ have the property that hydropnilic and lipophilic microdomains form interpenetrating networks conforming to cubic lattices on the scale of nanometers. Later these same structures were found in star diblock copolymers, where the simultaneous continuity of elastomeric and glassy domains gives rise to unique physical properties. Today it is well-established that the symmetry and topology of such a morphology are accurately described by one of several triply-periodic minimal surfaces, and that the interface between hydrophilic and hydrophobic, or immiscible polymer, domains is described by a triply-periodic surface of constant, nonzero mean curvature. One example of such a dividing surface is shown in figure 5.The study of these structures has become of increasing importance in the past five years for two reasons:1)Bicontinuous cubic phase liquid crystals are now being polymerized to create microporous materials with monodispersed pores and readily functionalizable porewalls; figure 3 shows a TEM from a polymerized surfactant / methylmethacrylate / water cubic phase; and2)Compelling evidence has been found that these same morphologies describe biomembrane systems in a wide range of cells.


1990 ◽  
Vol 51 (2) ◽  
pp. 185-200 ◽  
Author(s):  
Zhen-Gang Wang ◽  
S.A. Safran

2019 ◽  
Author(s):  
Jacob Ishibashi ◽  
Yan Fang ◽  
Julia Kalow

<p>Block copolymers are used to construct covalent adaptable networks that employ associative exchange chemistry (vitrimers). The resulting vitrimers display markedly different nanostructural, thermal and rheological properties relative to those of their statistical copolymer-derived counterparts. This study demonstrates that prepolymer sequence is a versatile strategy to modify the properties of vitrimers.</p>


2019 ◽  
Author(s):  
Yanchun Tang ◽  
Kohzo Ito ◽  
Hideaki Yokoyama

In this study, we prepared ultrafiltration membranes with a decoupled responses of filtration property to temperature and pH. The membrane preparation method was developed based on our previous work. We utilized methanol-supercritical carbon dioxide (methanol-scCO<sub>2</sub>) selective swelling method to introduce nanopores to block copolymers containing poly(diethylene glycol) methyl ether methacrylate (PMEO<sub>2</sub>MA), poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) and polystyrene (PS) blocks. Formation of the mesoporous barrier layer with PS being the mechanically stable part of the matrix was driven by selective swelling of the PMEO<sub>2</sub>MA-b-PDMAEMA domains. Due to the selective swelling of PMEO<sub>2</sub>MA or PDMAEMA domains to introduce pores, the interior of the pores are covered with PMEO<sub>2</sub>MA or PDMAEMA blocks after pore formation. The PMEO<sub>2</sub>MA-b-PDMAEMA polymer brushes are naturally attached on the pore walls and worked as functional gates. PMEO<sub>2</sub>MA is a non-toxic, neutral thermo-responsive polymer with LCST at 26 ᴼC. PDMAEMA is a typical weak polyelectrolyte with pK<sub>a</sub> value at 7.0-7.5 and also a thermo-responsive polymer revealed a LCST of 20-80 °C in aqueous solution. Therefore, these membranes were expected to have multi dimensions as function of the combination of temperature and pH. Moreover, to understand the detail of the temperature and pH depended conformation transitions of PMEO<sub>2</sub>MA-b-PDMAEMA brushes, those diblock copolymers were end-tethered on flat substrates and analyzed via neutron reflectivity (NR).


2019 ◽  
Author(s):  
Victor Bloemendal ◽  
Floris P. J. T. Rutjes ◽  
Thomas J. Boltje ◽  
Daan Sondag ◽  
Hidde Elferink ◽  
...  

<p>In this manuscript we describe a modular pathway to synthesize biologically relevant (–)-<i>trans</i>-Δ<sup>8</sup>-THC derivatives, which can be used to modulate the pharmacologically important CB<sub>1</sub> and CB<sub>2</sub> receptors. This pathway involves a one-pot Friedel-Crafts alkylation/cyclization protocol, followed by Suzuki-Miyaura cross-coupling reactions and gives rise to a series of new Δ<sup>8</sup>-THC derivatives. In addition, we demonstrate using extensive NMR evidence that similar halide-substituted Friedel-Crafts alkylation/cyclization products in previous articles were wrongly assigned as the para-isomers, which also has consequence for the assignment of the subsequent cross-coupled products and interpretation of their biological activity. </p> <p>Considering the importance of the availability of THC derivatives in medicinal chemistry research and the fact that previously synthesized compounds were wrongly assigned, we feel this research is describing a straightforward pathway into new cannabinoids.</p>


2018 ◽  
Author(s):  
Yaroslav Boyko ◽  
Christopher Huck ◽  
David Sarlah

<div>The first total synthesis of rhabdastrellic acid A, a highly cytotoxic isomalabaricane triterpenoid, has been accomplished in a linear sequence of 14 steps from commercial geranylacetone. The prominently strained <i>trans-syn-trans</i>-perhydrobenz[<i>e</i>]indene core characteristic of the isomalabaricanes is efficiently accessed in a selective manner for the first time through a rapid, complexity-generating sequence incorporating a reductive radical polyene cyclization, an unprecedented oxidative Rautenstrauch cycloisomerization, and umpolung 𝛼-substitution of a <i>p</i>-toluenesulfonylhydrazone with in situ reductive transposition. A late-stage cross-coupling in concert with a modular approach to polyunsaturated side chains renders this a general strategy for the synthesis of numerous family members of these synthetically challenging and hitherto inaccessible marine triterpenoids.</div>


Sign in / Sign up

Export Citation Format

Share Document