scholarly journals Correction to Contact Resonance Force Microscopy for Viscoelastic Property Measurements: From Fundamentals to State-of-the-Art Applications

2018 ◽  
Vol 51 (20) ◽  
pp. 8331-8331
Author(s):  
Jason P. Killgore ◽  
Frank W. DelRio
Langmuir ◽  
2011 ◽  
Vol 27 (23) ◽  
pp. 13983-13987 ◽  
Author(s):  
J. P. Killgore ◽  
D. G. Yablon ◽  
A. H. Tsou ◽  
A. Gannepalli ◽  
P. A. Yuya ◽  
...  

2018 ◽  
Vol 113 (8) ◽  
pp. 083102
Author(s):  
C. Ma ◽  
V. Pfahl ◽  
Z. Wang ◽  
Y. Chen ◽  
J. Chu ◽  
...  

2018 ◽  
Vol 124 (1) ◽  
pp. 014503 ◽  
Author(s):  
Matteo Aureli ◽  
Syed N. Ahsan ◽  
Rafiul H. Shihab ◽  
Ryan C. Tung

2018 ◽  
Vol 9 ◽  
pp. 945-952 ◽  
Author(s):  
Christopher C Glover ◽  
Jason P Killgore ◽  
Ryan C Tung

This work presents data confirming the existence of a scan speed related phenomenon in contact-mode atomic force microscopy (AFM). Specifically, contact-resonance spectroscopy is used to interrogate this phenomenon. Above a critical scan speed, a monotonic decrease in the recorded contact-resonance frequency is observed with increasing scan speed. Proper characterization and understanding of this phenomenon is necessary to conduct accurate quantitative imaging using contact-resonance AFM, and other contact-mode AFM techniques, at higher scan speeds. A squeeze film hydrodynamic theory is proposed to explain this phenomenon, and model predictions are compared against the experimental data.


Author(s):  
Matteo Aureli ◽  
Ryan Tung

Abstract In this paper, we present a new contact resonance atomic force microscopy based method utilizing a square, plate-like microsensor to accurately estimate viscoelastic sample properties. A theoretical derivation, based on Rayleigh-Ritz method and on an “unconventional” generalized eigenvalue problem, is presented and a numerical experiment is devised to verify the method. We present an updated sensitivity criterion that allows users, given a set of measured in-contact eigenfrequencies and modal damping ratios, to select the best eigenfrequency for accurate data estimation. The verification results are then presented and discussed. Results show that the proposed method performs extremely well in the identification of viscoelastic properties over broad ranges of non-dimensional sample stiffness and damping values.


Sign in / Sign up

Export Citation Format

Share Document