Vibration analysis of atomic force microscope cantilevers in contact resonance force microscopy using Timoshenko beam model

2017 ◽  
Vol 30 (5) ◽  
pp. 520-530 ◽  
Author(s):  
Xilong Zhou ◽  
Pengfei Wen ◽  
Faxin Li
2014 ◽  
Vol 92 (6) ◽  
pp. 472-483 ◽  
Author(s):  
M. Damircheli ◽  
M.H. Korayem

In an atomic force microscope (AFM), the cantilever vibrates by excitation at a frequency near the fundamental frequency, and the changes in vibration parameters, which result from the nonlinear forces of interaction between sample and cantilever tip, can be used as a tool to reveal the properties of the sample. To properly describe the images acquired by the AFM and to approximate the properties of the investigated sample, it is essential to use analytical and numerical models that can accurately simulate the dynamics of the cantilever and sample. For short beams, the Timoshenko model seems to be very accurate. Considering the fact that short beams (cantilevers) have many applications including the imaging of biological samples in liquid environments, the use of this theory seems to be necessary. In this paper, by employing the Timoshenko beam model, the effect of rotational inertia and shear deformation has been taken into consideration. The interaction forces between sample and cantilever in liquid, ambient air, and vacuum environments are quite different in terms of magnitude and formulation, and they play a significant role in the system’s dynamic response. These forces include hydrodynamic forces, electrostatic double layer force, etc. Using an accurate model for the interaction forces will improve the simulation results significantly. In this paper, the frequency response of the atomic force microscope has been investigated by applying the Timoshenko beam model and considering the forces of interaction between sample and tip in the air and liquid environments. The results indicate that the resonant frequency changes and cantilever vibration amplitude diminishes in a liquid environment compared to the air environment. The simulation results have good agreement with the experimental ones. The frequency responses for the attractive and repulsive regions in the two environments are compared and it is demonstrated that the dynamic response is highly dependent on the hydrodynamic and interaction forces in the liquid medium.


Small ◽  
2011 ◽  
Vol 7 (8) ◽  
pp. 1018-1022 ◽  
Author(s):  
Jason P. Killgore ◽  
Roy H. Geiss ◽  
Donna C. Hurley

Sign in / Sign up

Export Citation Format

Share Document