Twin Boundary Superstructures Assembled by Periodic Segregation of Solute Atoms

Nano Letters ◽  
2021 ◽  
Author(s):  
Hongbo Xie ◽  
Hucheng Pan ◽  
Junyuan Bai ◽  
Dongsheng Xie ◽  
Peijun Yang ◽  
...  
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cong He ◽  
Zhiqiao Li ◽  
Houwen Chen ◽  
Nick Wilson ◽  
Jian-Feng Nie

AbstractInterface segregation of solute atoms has a profound effect on properties of engineering alloys. The occurrence of solute segregation in coherent twin boundaries (CTBs) in Mg alloys is commonly considered to be induced by atomic size effect where solute atoms larger than Mg take extension sites and those smaller ones take compression sites in CTBs. Here we report an unusual solute segregation phenomenon in a group of Mg alloys—solute atoms larger than Mg unexpectedly segregate to compression sites of {10$$\overline 1$$ 1 ¯ 1} fully coherent twin boundary and do not segregate to the extension or compression site of {10$$\overline 1$$ 1 ¯ 2} fully coherent twin boundary. We propose that such segregation is dominated by chemical bonding (coordination and solute electronic configuration) rather than elastic strain minimization. We further demonstrate that the chemical bonding factor can also predict the solute segregation phenomena reported previously. Our findings advance the atomic-level understanding of the role of electronic structure in solute segregation in fully coherent twin boundaries, and more broadly grain boundaries, in Mg alloys. They are likely to provide insights into interface boundaries in other metals and alloys of different structures.


Author(s):  
P. R. Okamoto ◽  
N.Q. Lam ◽  
R. L. Lyles

During irradiation of thin foils in a high voltage electron microscope (HVEM) defect gradients will be set up between the foil surfaces and interior. In alloys defect gradients provide additional driving forces for solute diffusion since any preferential binding and/or exchange between solute atoms and mobile defects will couple a net flux of solute atoms to the defect fluxes. Thus, during irradiation large nonequilibrium compositional gradients can be produced near the foil surfaces in initially homogeneous alloys. A system of coupled reaction-rate and diffusion equations describing the build up of mobile defects and solute redistribution in thin foils and in a semi-infinite medium under charged-particle irradiation has been formulated. Spatially uniform and nonuniform damage production rates have been used to model solute segregation under electron and ion irradiation conditions.An example calculation showing the time evolution of the solute concentration in a 2000 Å thick foil during electron irradiation is shown in Fig. 1.


Author(s):  
Edward A Kenik

Segregation of solute atoms to grain boundaries, dislocations, and other extended defects can occur under thermal equilibrium or non-equilibrium conditions, such as quenching, irradiation, or precipitation. Generally, equilibrium segregation is narrow (near monolayer coverage at planar defects), whereas non-equilibrium segregation exhibits profiles of larger spatial extent, associated with diffusion of point defects or solute atoms. Analytical electron microscopy provides tools both to measure the segregation and to characterize the defect at which the segregation occurs. This is especially true of instruments that can achieve fine (<2 nm width), high current probes and as such, provide high spatial resolution analysis and characterization capability. Analysis was performed in a Philips EM400T/FEG operated in the scanning transmission mode with a probe diameter of <2 nm (FWTM). The instrument is equipped with EDAX 9100/70 energy dispersive X-ray spectrometry (EDXS) and Gatan 666 parallel detection electron energy loss spectrometry (PEELS) systems. A double-tilt, liquid-nitrogen-cooled specimen holder was employed for microanalysis in order to minimize contamination under the focussed spot.


Author(s):  
Yimei Zhu ◽  
Masaki Suenaga ◽  
R. L. Sabatini ◽  
Youwen Xu

The (110) twin structure of YBa2Cu3O7 superconductor oxide, which is formed to reduce the strain energy of the tetragonal to orthorhombic phase transformation by alternating the a-b crystallographic axis across the boundary, was extensively investigated. Up to now the structure of the twin boundary still remained unclear. In order to gain insight into the nature of the twin boundary in Y-Ba-Cu-O system, a study using electron diffraction techniques including optical and computed diffractograms, as well as high resolution structure imaging techniques with corresponding computer simulation and processing was initiated.Bulk samples of Y-Ba-Cu-O oxide were prepared as described elsewhere. TEM specimens were produced by crushing bulk samples into a fine powder, dispersing the powder in acetone, and suspending the fine particles on a holey carbon grid. The electron microscopy during this study was performed on both a JEOL 2000EX and 2000FX electron microscopes operated at 200 kV.


1996 ◽  
Vol 6 (12) ◽  
pp. 1567-1574 ◽  
Author(s):  
M. Mukoujima ◽  
K. Kawabata ◽  
T. Sambongi

1999 ◽  
Vol 09 (PR10) ◽  
pp. Pr10-297-Pr10-298
Author(s):  
T. Sambongi ◽  
T. Yokoyama ◽  
T. Saga ◽  
K. Kawabata
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document