scholarly journals Multifunctional Biodegradable Prussian Blue Analogue for Synergetic Photothermal/Photodynamic/Chemodynamic Therapy and Intrinsic Tumor Metastasis Inhibition

Author(s):  
Yuting Hao ◽  
Lianzhi Mao ◽  
Rongjun Zhang ◽  
Xiaoshan Liao ◽  
Miaomiao Yuan ◽  
...  
2021 ◽  
Author(s):  
Yuting Hao ◽  
Lianzhi Mao ◽  
Rongjun Zhang ◽  
Xiaoshan Liao ◽  
Miaomiao Yuan ◽  
...  

Abstract Background To date, various Prussian blue analogues (PBA) have been prepared for biomedical applications due to their unique structural advantages. However, the safety and effectiveness of tumor treatment still need further exploration. Results This contribution reports a facile synthesis of novel PBA with superior tumor synergetic therapy effects and a detailed mechanistic evaluation of their intrinsic tumor metastasis inhibition activity. The as-synthesized PBA have a uniform cube structure with a diameter of approximately 220 nm and showed high near infrared light (NIR) photoreactivity, photothermal conversion efficiency (41.44%) and photodynamic effect. Additionally, PBA could lead to chemodynamic effect which caused by Fenton reaction and ferroptosis. The combined therapy strategy of PBA exhibit notable tumor ablation properties due to photothermal therapy (PTT)/photodynamic therapy (PDT)/ chemodynamic therapy (CDT) effect without obvious toxicity in vivo. The PBA also demonstrate potential as a contrast agent for magnetic resonance imaging (MRI) and photoacoustic (PA) imaging. More importantly, careful investigations reveal that PBA displays excellent biodegradation and anti-metastasis properties. Further exploration of this PBA implies that its underlying mechanism of intrinsic tumor metastasis inhibition activity can be attributed to modulation of epithelial mesenchymal transition (EMT) expression. Conclusions The considerable potential exhibits by as-synthesized PBA make it an ideal candidate as a synergetic therapeutic agent for tumor treatment.


2021 ◽  
Vol 7 (7) ◽  
pp. 99
Author(s):  
Linh Trinh ◽  
Eric Rivière ◽  
Sandra Mazerat ◽  
Laure Catala ◽  
Talal Mallah

The collective magnetic behavior of photoswitchable 11 nm cyanide-bridged nanoparticles based of the Prussian blue analogue CsCoFe were investigated when embedded in two different matrices with different concentrations. The effect of the intensity of light irradiation was studied in the less concentrated sample. Magnetization studies and alternating magnetic susceptibility data are consistent with a collective magnetic behavior due to interparticle dipolar magnetic interaction for the two compounds, even though the objects have a size that place them in the superparamagnetic regime.


Author(s):  
Ekaterina Mamontova ◽  
María Rodríguez-Castillo ◽  
Erwan Oliviero ◽  
Yannick Guari ◽  
Joulia Larionova ◽  
...  

We report in this article new magneto-plasmonic core@satellites Prussian Blue Analogue (PBA)@Au-Ag nanoheterostructures obtained by using a post-synthetic impregnation of a bimetallic [AuI2AgI2(C6F5)4(OEt2)2]n molecular complex with the ferromagnetic K+/Ni2+/[Cr(CN)6]3− PBA...


Author(s):  
Giovanni Azzolina ◽  
Hiroko Tokoro ◽  
Kenta Imoto ◽  
Marie Yoshikiyo ◽  
Shin‐ichi Ohkoshi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document