Lithographic Patterning and Selective Functionalization of Metal Nanoparticle Composite Films

2020 ◽  
Vol 2 (11) ◽  
pp. 3741-3748
Author(s):  
Hendrik Schlicke ◽  
Sophia C. Bittinger ◽  
Tobias Vossmeyer
RSC Advances ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 6438-6443
Author(s):  
Daiki Fujioka ◽  
Shingo Ikeda ◽  
Kensuke Akamatsu ◽  
Hidemi Nawafune ◽  
Kazuo Kojima

Nickel-nanoparticle-containing polyimide composite films were prepared by liquid-phase reduction of Ni2+ ions with potassium borohydride (KBH4). This preparation method could be repeated to increase the number of the nanoparticles in the films.


RSC Advances ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 2857-2864 ◽  
Author(s):  
Chenghua Zong ◽  
Mengyi Ge ◽  
Hong Pan ◽  
Jing Wang ◽  
Xinming Nie ◽  
...  

Facile and large-scale synthesis of flexible metal nanoparticle–polymer composite films as highly sensitive SERS substrates for in situ food inspection.


Author(s):  
Peng Wang ◽  
Zhongbin Pan ◽  
Weilin Wang ◽  
Jianxu Hu ◽  
Jinjun Liu ◽  
...  

High-performance electrostatic capacitors are in urgent demand owing to the rapidly development of advanced power electronic applications. However, polymer-based composite films with both high breakdown strength (Eb) and dielectric constant...


MRS Advances ◽  
2020 ◽  
Vol 5 (62) ◽  
pp. 3315-3325
Author(s):  
Viktoriia Savchuk ◽  
Arthur R. Knize ◽  
Pavlo Pinchuk ◽  
Anatoliy O. Pinchuk

AbstractWe present a systematic numerical analysis of the quantum yield of an electric dipole coupled to a plasmonic nanoparticle. We observe that the yield is highly dependent on the distance between the electric dipole and the nanoparticle, the size and permittivity of the nanoparticle, and the wavelength of the incident radiation. Our results indicate that enhancement of the quantum yield is only possible for electric dipoles coupled to a nanoparticle with a radius of 20 nm or larger. As the size of the nanoparticle is increased, emission enhancement occurs at wavelengths dependent on the coupling distance.


2010 ◽  
Vol 38 (1) ◽  
pp. 80-98 ◽  
Author(s):  
M. Gerster ◽  
C. Fagouri ◽  
E. Peregi

Abstract One challenge facing green tire technology is to achieve good silica hydrophobation/dispersion within the polymer matrix without a detrimental increase in the rubber compound’s viscosity during compounding. This phenomenon is well known to be induced by premature and unwanted coupling and/or crosslinking of the traditional coupling agents. The current state-of-the-art polysulfides silanes, bis(3-triethoxysilylpropyl)tetrasulfide and to a lesser extent bis(3-triethoxysilylpropyl)disulfide (“Product Application—VP Si 75/VP X 75-S in the Rubber Industry,” Degussa Hüls Report No. PA 723.1E), need to be carefully incorporated with careful temperature control during the rubber compounding to prevent this “scorchy” behavior. This paper will present novel monofunctional silanes which are suited for preparing highly silica-loaded rubber compounds of superior processability, while applying fewer mixing passes, thereby reducing mixing times which can lead to improved productivity and cost savings. Additionally, these safer coupling agents can be processed at higher temperatures which can, again, lead to reduced mixing time and better ethanol removal thereby improving the tire’s physical properties and reducing the volatile organic compounds generated during the tire’s use. The rubber compounds produced using these monofunctional silanes are characterized by lower Mooney viscosity and improved processability. Advantageously, within these novel chemical classes of coupling agents, selective functionalization of the silanes allows production of tailor-made coupling agents which can respond to the specific requirements of the tire industry (Vilgis, T. A. and Heinrich, G., “Die Physic des Autoreifens,” Physikalische Blätter, Vol. 57, 2001, pp. 1–7).


Author(s):  
Zhongchao Feng ◽  
Bingcun Zhang ◽  
Wanliang Hou ◽  
Lixin Chao ◽  
Yaqing Wang ◽  
...  
Keyword(s):  

Author(s):  
Jordan C. Sawyer ◽  
Jacques Abboud ◽  
Zhili Zhang ◽  
Steven Adams

Sign in / Sign up

Export Citation Format

Share Document