Rational Design and Synthesis of Adjustable Pt and Pt-Based 3D-Nanoframeworks

Author(s):  
Panchao Zhao ◽  
Bosheng Zhang ◽  
Xiaodong Hao ◽  
Wei Yi ◽  
Jialin Chen ◽  
...  
2020 ◽  
Vol 85 (16) ◽  
pp. 10552-10560
Author(s):  
Peng Sang ◽  
Yan Shi ◽  
Pirada Higbee ◽  
Minghui Wang ◽  
Sami Abdulkadir ◽  
...  

2012 ◽  
Vol 22 (2) ◽  
pp. 73-74 ◽  
Author(s):  
Alexey A. Zeifman ◽  
Ilya Yu. Titov ◽  
Igor V. Svitanko ◽  
Tatiana V. Rakitina ◽  
Aleksey V. Lipkin ◽  
...  

Carbon ◽  
2021 ◽  
Author(s):  
Yajuan Zhao ◽  
Haolin Lyu ◽  
Yujie Liu ◽  
Wenjie Liu ◽  
Yong Tian ◽  
...  

1999 ◽  
Vol 274 (14) ◽  
pp. 9587-9599 ◽  
Author(s):  
Sandeep Mahajan ◽  
Sutapa Ghosh ◽  
Elise A. Sudbeck ◽  
Yaguo Zheng ◽  
Suzanne Downs ◽  
...  

CrystEngComm ◽  
2015 ◽  
Vol 17 (48) ◽  
pp. 9336-9347 ◽  
Author(s):  
Jingyun Ma ◽  
Longwei Yin ◽  
Tairu Ge

We report on the rational design and synthesis of three dimensional (3D) Cu-doped NiO architectures with an adjustable chemical component, surface area, and hierarchically porous structure as anodes for lithium ion battery.


RSC Advances ◽  
2015 ◽  
Vol 5 (92) ◽  
pp. 74986-74993 ◽  
Author(s):  
Komal Prasad ◽  
Ritesh Haldar ◽  
Tapas Kumar Maji

Based on rational design and synthesis approach, a pyrene based supramolecular flexible porous framework of Zn(ii) has been synthesized. It shows excimer emission and has been exploited for light harvesting application.


2017 ◽  
Vol 73 (8) ◽  
pp. 645-651 ◽  
Author(s):  
Qiu-Ying Huang ◽  
Yang Zhao ◽  
Xiang-Ru Meng

Careful choice of the organic ligands is one of the most important parameters in the rational design and synthesis of coordination polymers. Aromatic polycarboxylates have been widely used in the preparation of metal–organic polymers since they can utilize various coordination modes to form diverse structures and can act as hydrogen-bond acceptors and donors in the assembly of supramolecular structures. Nitrogen-heterocyclic organic compounds have also been used extensively as ligands for the construction of polymers with interesting structures. In the polymers catena-poly[[[diaquabis{2-[(1H-imidazol-1-yl)methyl]-6-methyl-1H-benzimidazole-κN 3}cobalt(II)]-μ2-benzene-1,4-dicarboxylato-κ2 O 1:O 4] dihydrate], {[Co(C8H4O4)(C12H11N4)2(H2O)2]·2H2O} n , (I), and catena-poly[[[diaquabis{2-[(1H-imidazol-1-yl)methyl]-6-methyl-1H-benzimidazole-κN 3}nickel(II)]-μ2-benzene-1,4-dicarboxylato-κ2 O 1:O 4] dihydrate], {[Ni(C8H4O4)(C12H11N4)2(H2O)2]·2H2O} n , (II), the CoII or NiII ion lies on an inversion centre and exhibits a slightly distorted octahedral coordination geometry, coordinated by two N atoms from two imidazole rings and four O atoms from two monodentate carboxylate groups and two water molecules. The dicarboxylate ligands bridge metal ions forming a polymeric chain. The 2-[(1H-imidazol-1-yl)methyl]-6-methyl-1H-benzimidazole ligands coordinate to the CoII or NiII centres in monodentate modes through an imidazole N atom and are pendant on opposite sides of the main chain. The two structures are isomorphous. In the crystal, the one-dimensional chains are further connected through O—H...O, O—H...N and N—H...O hydrogen bonds, leading to a three-dimensional supramolecular architecture. In addition, the IR spectroscopic properties, PXRD patterns, thermogravimetric behaviours and fluorescence properties of both polymers have been investigated.


Sign in / Sign up

Export Citation Format

Share Document