Syntheses, structures and characterization of isomorphous CoII and NiII coordination polymers based on 2-[(1H-imidazol-1-yl)methyl]-6-methyl-1H-benzimidazole and benzene-1,4-dicarboxylate

2017 ◽  
Vol 73 (8) ◽  
pp. 645-651 ◽  
Author(s):  
Qiu-Ying Huang ◽  
Yang Zhao ◽  
Xiang-Ru Meng

Careful choice of the organic ligands is one of the most important parameters in the rational design and synthesis of coordination polymers. Aromatic polycarboxylates have been widely used in the preparation of metal–organic polymers since they can utilize various coordination modes to form diverse structures and can act as hydrogen-bond acceptors and donors in the assembly of supramolecular structures. Nitrogen-heterocyclic organic compounds have also been used extensively as ligands for the construction of polymers with interesting structures. In the polymers catena-poly[[[diaquabis{2-[(1H-imidazol-1-yl)methyl]-6-methyl-1H-benzimidazole-κN 3}cobalt(II)]-μ2-benzene-1,4-dicarboxylato-κ2 O 1:O 4] dihydrate], {[Co(C8H4O4)(C12H11N4)2(H2O)2]·2H2O} n , (I), and catena-poly[[[diaquabis{2-[(1H-imidazol-1-yl)methyl]-6-methyl-1H-benzimidazole-κN 3}nickel(II)]-μ2-benzene-1,4-dicarboxylato-κ2 O 1:O 4] dihydrate], {[Ni(C8H4O4)(C12H11N4)2(H2O)2]·2H2O} n , (II), the CoII or NiII ion lies on an inversion centre and exhibits a slightly distorted octahedral coordination geometry, coordinated by two N atoms from two imidazole rings and four O atoms from two monodentate carboxylate groups and two water molecules. The dicarboxylate ligands bridge metal ions forming a polymeric chain. The 2-[(1H-imidazol-1-yl)methyl]-6-methyl-1H-benzimidazole ligands coordinate to the CoII or NiII centres in monodentate modes through an imidazole N atom and are pendant on opposite sides of the main chain. The two structures are isomorphous. In the crystal, the one-dimensional chains are further connected through O—H...O, O—H...N and N—H...O hydrogen bonds, leading to a three-dimensional supramolecular architecture. In addition, the IR spectroscopic properties, PXRD patterns, thermogravimetric behaviours and fluorescence properties of both polymers have been investigated.

2015 ◽  
Vol 71 (10) ◽  
pp. 850-855 ◽  
Author(s):  
Hui-Ting Wang

In order to explore new metal coordination polymers and to search for new types of ferroelectrics among hybrid coordination polymers, two manganese dicyanamide complexes, poly[tetramethylammonium [di-μ3-dicyanamido-κ6N1:N3:N5-tri-μ2-dicyanamido-κ6N1:N5-dimanganese(II)]], {[(CH3)4N][Mn2(NCNCN)5]}n, (I), andcatena-poly[bis(butyltriphenylphosphonium) [[(dicyanamido-κN1)manganese(II)]-di-μ2-dicyanamido-κ4N1:N5]], {[(C4H9)(C6H5)3P]2[Mn(NCNCN)4]}n, (II), were synthesized in aqueous solution. In (I), one MnIIcation is octahedrally coordinated by six nitrile N atoms from six anionic dicyanamide (dca) ligands, while the second MnIIcation is coordinated by four nitrile N atoms and two amide N atoms from six anionic dca ligands. Neighbouring MnIIcations are linked together by μ-1,5- and μ-1,3,5-bridging dca anions to form a three-dimensional polymeric structure. The anionic framework exhibits a solvent-accessible void of 289.8 Å3, amounting to 28.0% of the total unit-cell volume. Each of the cavities in the network is occupied by only one tetramethylammonium cation. In (II), each MnIIcation is octahedrally coordinated by six nitrile N atoms from six dca ligands. Neighbouring MnIIcations are linked together by double dca bridges to form a one-dimensional polymeric chain, and C—H...N hydrogen-bonding interactions are involved in the formation of the one-dimensional layer structure.


CrystEngComm ◽  
2015 ◽  
Vol 17 (48) ◽  
pp. 9336-9347 ◽  
Author(s):  
Jingyun Ma ◽  
Longwei Yin ◽  
Tairu Ge

We report on the rational design and synthesis of three dimensional (3D) Cu-doped NiO architectures with an adjustable chemical component, surface area, and hierarchically porous structure as anodes for lithium ion battery.


2015 ◽  
Vol 71 (10) ◽  
pp. 929-935 ◽  
Author(s):  
Hyun-Chul Kim ◽  
Ja-Min Gu ◽  
Seong Huh ◽  
Chul-Hyun Yo ◽  
Youngmee Kim

Two new one-dimensional CuIIcoordination polymers (CPs) containing theC2h-symmetric terphenyl-based dicarboxylate linker 1,1′:4′,1′′-terphenyl-3,3′-dicarboxylate (3,3′-TPDC), namelycatena-poly[[bis(dimethylamine-κN)copper(II)]-μ-1,1′:4′,1′′-terphenyl-3,3′-dicarboxylato-κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), andcatena-poly[[aquabis(dimethylamine-κN)copper(II)]-μ-1,1′:4′,1′′-terphenyl-3,3′-dicarboxylato-κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours,i.e.violet plates for (I) and blue needles for (II), both of which were analysed by X-ray crystallography. The 3,3′-TPDC bridging ligands coordinate the CuIIions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one-dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutuallytranspositions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one-dimensional coordination polymer chains, forming a two-dimensional network in (I) and a three-dimensional network in (II).


2015 ◽  
Vol 68 (5) ◽  
pp. 742 ◽  
Author(s):  
Qing-Guo Meng ◽  
Lin-Tong Wang ◽  
Ji-Tao Lu ◽  
Xin Wang ◽  
Wei Lu ◽  
...  

Four metal–organic coordination polymers, [Cd2(dna)2(2,2′-bpy)2]n (1), {[Cd4(dna)4(im)3]·5H2O}n (2), {[Cd2(dna)2(4,4′-bpy)(H2O)2]·2EtOH}n (3), and {[Cd4(dna)4(1,3-dpp)4(H2O)4]·2H2O}n (4) (H2dna = 4,6-dimethyl-5-nitroisophthalic acid; 2,2′-bpy = 2,2′-bipyridine; im = imidazole; 4,4′-bpy = 4,4′-bipyridine; 1,3-dpp = 1,3-di(4-pyridyl)propane; and EtOH = ethanol, have been solvothermally synthesized and characterized. Compound 1 displays a one-dimensional (1D) ladder structure and the neighbouring ladders are further stabilized by π···π interactions to form a two-dimensional (2D) layer. Compound 2 forms a 2D layer based on infinite 1D [Cd2(COO)4]n chain and the im ligands act as terminal ligands, preventing expansion of the dimensionality. Compound 3 features a 2D 44-sql layer based on binuclear [Cd2(COO)4] secondary building units as 4-connected nodes, and is further linked to be an unusual three-dimensional (3D) supramolecular architecture by hydrogen bonds involving the coordinated water molecules, carboxylate groups, and lattice ethanol molecules. Compound 4 possesses a 2-fold interpenetrated dia net. The diverse structures and topologies of compounds 1–4 indicate that the N-containing ligands have significant effects on the formation of the final network structures. In addition, the thermal stabilities, structure comparison, and photoluminescence properties of the complexes have been investigated.


2008 ◽  
Vol 61 (10) ◽  
pp. 813 ◽  
Author(s):  
En-Cui Yang ◽  
Qing-Qing Liang ◽  
Xiu-Guang Wang ◽  
Xiao-Jun Zhao

To explore the effects of a co-ligand on the construction of mixed-ligand metal–organic frameworks (MOFs), two new triazole-based complexes with a flexible dicarboxylate as a co-ligand, {[Zn4(trz)4(gt)2(H2O)2](H2O)2}n 1 and {[Cd2(trz)2(gt)(H2O)2](H2O)4}n 2 (Htrz = 1,2,4-triazole; H2gt = glutaric acid), were synthesized and their structures were fully characterized by elemental analyses, IR spectroscopy, and single-crystal X-ray crystallography. Their thermal stability and luminescence emissions were further investigated to establish their structure–property relationship. Crystal structure determination showed that 1 is a neutral two-dimensional pillared-bilayer network consisting of 14-membered hydrophobic channels, whereas 2 is an infinite three-dimensional framework constructed from tetranuclear [Cd4(trz)4]4+ subunits. Interestingly, the overall structure of both MOFs can be solely supported by ZnII/CdII and trz anions, and were further consolidated by the introduction of a flexible gt co-ligand. In addition, the carboxylate groups in the co-ligand can also serve as a weak O–H···O hydrogen-bond acceptor to capture guest water molecules. The synchronous weight-loss behaviour of trz and gt anions presented by thermogravometric curves suggest their cooperative contributions to the thermal stability of the MOFs. In contrast, the fluorescence emissions of two complexes are significantly dominated by the core trz ligand, rather than the gt co-ligand and metal ions.


2011 ◽  
Vol 66 (4) ◽  
pp. 355-358
Author(s):  
Man-Sheng Chen ◽  
Yi-Fang Deng ◽  
Zhi-Min Chen ◽  
Chun-Hua Zhang ◽  
Dai-Zhi Kuang

A unique 3D fourfold interpenetrated metal-organic framework, [Co(L)(H2O)2]・H2O (1), has been synthesized by the solvothermal reaction of H2L with Co(NO3)2・6H2O (H2L = 5-(isonicotinamido) isophthalic acid). Compound 1 crystallizes in the monoclinic space group P21/c, with the cell parameters: a = 81301(8), b = 107711(11), c = 167697(16) Å , β = 92.656(2) °, V = 14669(3) Å3, R1 = 0.0325 and wR2 = 0.0833. Its framework has (10,3)-b topology, where the cobalt atoms are alternately bridged by the pyridyl and the carboxylate groups of the L2− ligands into a three-dimensional network. Compound 1 displays antiferromagnetic interactions. Above 40 K, χm −1 obeys the Curie- Weiss law with C = 3.28 emu Kmol−1 andΘ = −0.66 K.


Author(s):  
Jun Wang ◽  
Jian-Qing Tao ◽  
Xiao-Juan Xu ◽  
Chun-Yun Tan

In the title mixed-ligand metal–organic polymeric compound, {[Cd(C14H8O6S)(C16H16N2)]·3H2O}n, the asymmetric unit contains a crystallographically unique CdIIatom, one doubly deprotonated 4,4′-sulfonyldibenzoic acid (H2SDBA) ligand, one 3,4,7,8-tetramethyl-1,10-phenanthroline (TMPHEN) molecule and three solvent water molecules. Each CdIIcentre is six-coordinated by two O atoms from a chelating carboxylate group of a SDBA2−ligand, two O atoms from monodentate carboxylate groups of two different SDBA2−ligands and two N atoms from a chelating TMPHEN ligand. There are two coordination patterns for the carboxylate groups of the SDBA2−ligand, with one in a μ1-η1:η1chelating mode and the other in a μ2-η1:η1bis-monodentate mode. Single-crystal X-ray diffraction analysis revealed that the title compound is a one-dimensional double-chain polymer containing 28-membered rings based on the [Cd2(CO2)2] rhomboid subunit. More interestingly, a chair-shaped water hexamer cluster is observed in the compound.


2010 ◽  
Vol 63 (3) ◽  
pp. 463 ◽  
Author(s):  
Chun-Sen Liu ◽  
Min Hu ◽  
Song-Tao Ma ◽  
Qiang Zhang ◽  
Li-Ming Zhou ◽  
...  

To explore the coordination possibilities of perylene-based ligands with a larger conjugated π-system, four ZnII, MnII, and CoII coordination polymers with perylene-3,4,9,10-tetracarboxylate (ptc) and the chelating 1,10-phenanthroline (phen) ligands were synthesized and characterized: {[Zn2(ptc)(phen)2](H2O)10}∞ (1), {[Zn3(ptc)(OH)2(phen)2](H2O)3}∞ (2), {[Mn(ptc)0.5(phen)(H2O)2](H2O)1.5}∞ (3), and {[Co(ptc)0.5(phen)(H2O)2](H2O)2.5}∞ (4). Structural analysis reveals that complexes 1 and 2 both take one-dimensional polymeric chain structures with dinuclear and trinuclear units as nodes, respectively, which are further extended via the accessorial secondary interchain interactions, such as C–H···O H-bonding or aromatic π···π stacking interactions, to give rise to the relevant higher-dimensional frameworks. Compound 3 has a two-dimensional sheet structure that is further assembled to form a three-dimensional framework by interlayer π···π stacking interactions. Complex 4 is a one-dimensional ribbon-like array structure that is interlinked by the co-effects of intermolecular π···π stacking and C–H···π supramolecular interactions, resulting in a higher-dimensional framework from the different crystallographic directions. Moreover, complexes 1–4 exhibit strong solid-state luminescence emissions at room temperature, which mainly originate from intraligand π→π* transitions of ptc.


Author(s):  
Jian-Qing Tao

In the title mixed-ligand metal–organic polymeric complex [Cd(C14H8O6S)(C16H16N2)(H2O)]n, the asymmetric unit contains a crystallographically unique CdIIatom, one doubly deprotonated 4,4′-sulfonyldibenzoic acid ligand (H2SDBA), one 3,4,7,8-tetramethyl-1,10-phenanthroline (TMPHEN) molecule and one water molecule. Each CdIIcentre is coordinated by two N atoms from the chelating TMPHEN ligand, three O atoms from monodentate carboxylate groups of three different SDBA2−ligands and one O atom from a coordinated water molecule, giving a distorted CdN2O4octahedral geometry. Single-crystal X-ray diffraction analysis reveals that the compound is a one-dimensional double-chain polymer containing 28-membered rings based on Cd2O2clusters, with a Cd...Cd separation of 3.6889 (4) Å. These chains are linked by O—H...O and C—H...O hydrogen bonds to form a three-dimensional supramolecular framework. The framework is reinforced by π–π and C—O...π interactions.


Sign in / Sign up

Export Citation Format

Share Document