Harvesting Low-Grade Waste Heat to Electrical Power Using a Thermoelectrochemical Cell Based on a Titanium Carbide Electrode

Author(s):  
Byung-Jo Lee ◽  
Sang-Mun Jung ◽  
Jaesub Kwon ◽  
Jinhyeon Lee ◽  
Kyu-Su Kim ◽  
...  
Author(s):  
G. El Achkar ◽  
A. Dianoux ◽  
A. Kheiri ◽  
D. Maillet ◽  
T. Mazet ◽  
...  

Author(s):  
Huijuan Chen ◽  
Ricardo Vasquez Padilla ◽  
Saeb Besarati

Supercritical fluids have been studied and used as the working fluids in power generation system for both high- and low-grade heat conversions. Low-grade heat sources, typically defined as below 300 ºC, are abundantly available as industrial waste heat, solar thermal, and geothermal, to name a few. However, they are under-exploited for power conversion because of the low conversion efficiency. Technologies that allow the efficient conversion of low-grade heat into mechanical or electrical power are very important to develop. First part of this chapter investigates the potential of supercritical Rankine cycles in the conversion of low-grade heat to power, while the second part discusses supercritical fluids used in higher grade heat conversion system. The selection of supercritical working fluids for a supercritical Rankine cycle is of key importance. This chapter discusses supercritical fluids fundamentals, selection of supercritical working fluids for different heat sources, and the current research, development, and commercial status of supercritical power generation systems.


Author(s):  
Adam Halsband

Recent technological developments in expander design and next generation refrigerants have made implementation of the Organic Rankine Cycle (ORC) a viable strategy for converting low grade heat into valuable amounts of recoverable, green electrical power. This green process reduces the typical plants carbon footprint. A brief review of the technical drivers of a typical ORC design will be followed with examples of waste heat energy sources in a typical 50 MMGPY biofuels plant. A Case History will be presented for potential energy sources to drive the process that will include 1.) 15 psig steam / condensate return 2.) Boiler stack gas 3.) Dryer stack gas emissions with expected converted electrical energy yields. Impact of energy savings and reducing total plant carbon emissions will also be addressed.


2016 ◽  
Vol 745 ◽  
pp. 032037 ◽  
Author(s):  
G El Achkar ◽  
A Dianoux ◽  
A Kheiri ◽  
D Maillet ◽  
T Mazet ◽  
...  

2017 ◽  
Vol 351 ◽  
pp. 45-50 ◽  
Author(s):  
Mohammad Rahimi ◽  
Adriana D'Angelo ◽  
Christopher A. Gorski ◽  
Onofrio Scialdone ◽  
Bruce E. Logan

2018 ◽  
Vol 64 ◽  
pp. 06005
Author(s):  
Rana Sohel ◽  
Iqbal Arbab ◽  
Date Abhijit ◽  
Akbarzadeh Aliakbar

Thermoelectric technology is thought to be a great solution in near future for producing electrical power and recovering low grade waste heat to cut the cost of power generation because of its consistency and eco-friendly affability. Though commercial accessibility of TEG is available currently but heat to electricity conversion efficiency is still low and cost of the module is reasonably high. It’s essential to use the modules competently which is strongly depends on suitable heat exchanger design and selection of proper operating conditions. In this work, TEG module has been selected from the commercially available modules with efficiency of 1.91% for the targeted low-grade waste heat temperature of Th=90°C and Tc=15°C which validated by experiment. Mathematical model has been proposed to simulate TEG based power generation system; the model can predict maximum net power, choose optimum operating conditions and dimensions of heat exchanger. Lab scale design with channel length 1 m, width 0.08 m and gap size 9 mm which is suitable for 50 TEG module (4 mm x 4 mm) have been simulated using proposed mathematical model. For above temperature range, predicted optimum net power was 76.45 W with optimum flow rate 0.94 L/s (56.4 L/min). This lab scale setup will be used for experimental validation of the proposed mathematical model. The obtained results from experiments and simulation are closely matched.


Author(s):  
Huijuan Chen ◽  
Ricardo Vasquez Padilla ◽  
Saeb Besarati

Supercritical fluids have been studied and used as the working fluids in power generation system for both high- and low-grade heat conversions. Low-grade heat sources, typically defined as below 300 ºC, are abundantly available as industrial waste heat, solar thermal, and geothermal, to name a few. However, they are under-exploited for power conversion because of the low conversion efficiency. Technologies that allow the efficient conversion of low-grade heat into mechanical or electrical power are very important to develop. First part of this chapter investigates the potential of supercritical Rankine cycles in the conversion of low-grade heat to power, while the second part discusses supercritical fluids used in higher grade heat conversion system. The selection of supercritical working fluids for a supercritical Rankine cycle is of key importance. This chapter discusses supercritical fluids fundamentals, selection of supercritical working fluids for different heat sources, and the current research, development, and commercial status of supercritical power generation systems.


Author(s):  
Miroslav P. Petrov ◽  
Jens Fridh ◽  
Ake Göransson ◽  
Torsten H. Fransson

Energy utilization from low-grade fuels of either fossil or renewable origin, or from medium-temperature heat sources such as solar, industrial waste heat, or small nuclear reactors, for small-scale power generation via steam cycles, can be reasonably enhanced by a simple technology shift. This study evaluates the technical feasibility of a compact power generation package comprising a steam turbine directly coupled to a high-speed alternator delivering around 8–12 MW of electrical power. Commercial or research-phase high-speed electrical generators at MW-scale are reviewed, and a basic thermodynamic design and flow-path analysis of a steam turbine able to drive such a generator is attempted. High-speed direct drives are winning new grounds due to their abilities to be speed-controlled and to avoid the gearbox otherwise typical for small system drivetrains. These two features may offer a reasonable advantage to conventional drives in terms of higher reliability and better economy. High-speed alternators with related power electronics are nowadays becoming increasingly available for the MW-size market. A generic 8 to 12 MW synchronous alternator running respectively at 15,000 to 10,000 rpm, have been used as a reference for evaluating the fundamental design of a directly coupled steam turbine prime mover. The moderate steam parameter concept suits well for converting mid-temperature thermal energy into electrical power with the help of low-tech steam cycles, allowing for distributed electricity production at reasonable costs and efficiency. Steam superheat temperatures below 350°C (660°F) at pressures of maximum 20 bar would keep the steam volumetric flow sufficiently high in order to restrain the turbine losses typical for small-scale turbines, while helping also with simpler certification and safety procedures and using primarily established technology and standard components. The proposed steam turbines designs and their characteristics thereof have been evaluated by computer simulations using the in-house code ProSteam and its sub-procedures AXIAL and VaxCalc, by courtesy of Siemens Industrial Turbomachinery and its steam turbine division located in Finspong, Sweden. The first results from this study show that high-speed steam turbines of the proposed size and type are possible to design and manufacture based on conventional components, and can be expected to deliver a very satisfactory performance at variable power output.


1992 ◽  
Vol 25 (12) ◽  
pp. 33-47 ◽  
Author(s):  
T. S. C. Gross ◽  
R. R. Cohen

The small island of Jersey is served by a single wastewater treatment plant at Bellozanne. Since its inception some 30 years ago the sludge produced has been used on agricultural land. Inevitably there are circumstances which prevent this happening without interruption, eg, poor weather, or seasonal demand. On these occasions, the island has no other disposal option to fall back on. Furthermore, concerns over the practice have created a perception that it might be doing harm to the ‘quality' of the farm produce. The responsible body, the Public Services Department, formulated a flexible, multiple option solution and commissioned Halcrow to engineer the capital works. The works centre around a thermal drying plant using biogas produced by the digestion process as the main fuel. Waste heat is recovered for digester heating making the total process potentially self sufficient in energy. At the same time, the bulk of the product is reduced considerably, providing an easily transported material with potential for use directly on the land as a fertilizer substitute or as a low grade fuel. Farfrom being a disposal problem requiring manpower and expense, sludge will soon be regarded by the States of Jersey as a valuable resource with a revenue potential.


APL Materials ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 011105
Author(s):  
Daniel Dzekan ◽  
Anja Waske ◽  
Kornelius Nielsch ◽  
Sebastian Fähler
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document